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Abstract 
An examination of the suitability of an Irish Sitka spruce research panel data set for growth 
modelling purposes was undertaken. The panel data set arose from several repeated 
measurements in replicated field experiments. When being considered as data for yield 
modelling several difficulties arise. Simple histograms comparing sampled plots and the 
underlying forest estate demonstrated a sampling imbalance - whereby site index classes for 
sampled plots misrepresented the population. The spatial proximity of established plots also 
meant there was a lack of randomisation at the plot level, which eroded statistical 
independence between plots and increased plot cross-correlations. However, the availability of 
independent, non-research volume data pennitted the construction of stand-level volume 
equations for both research and non-research stands. Observed differences in volume equation 
residuals for research thinned and unthinned stands were then explored. Thinning effects, 
volume equation inadequacy, or other sampling biascs wcre considered as potential candidates 
to explain residual differences. It was found that the differences were consistent with a fonn 
of sampling bias when measuring volume sample trees. These validation techniques have led 
to a better understanding of the research data set. 

Keywords: Growth modelling, panel data, Sitka spruce, validation. 

Introdnction 
Pennanent sample plots are the most common source of data for studies concerning 
forest growth and yield. Data from permanent sample plots have both spatial and 
time components. The spatial component is associated with the location of plots 
within a forest estate, which collectively give rise to a cross-sectional sample at a 
given point in time. The temporal component refers to repeated measurement of 
permanent sample plots, giving rise to a longitudinal sample. Data from permanent 
sample plots that combine cross-sectionaJ and longitudinal samples are known as 
panel data. Forestry panel datasets tend to be more complicated than those found 
within econometric literature. The reason is that the longitudinal sections, or time 
between samples, in forestry data sets are often not evenly spaced. 

Standard validation of forestry panel data usually progresses via a range of ad hoc 
computer based techniques that examine both longitudinal attributes, such as the time 
series associated with individual tree diameters in a plot, and cross-sectional aspects, 
such as rates of taper along volume sample trees. Standard validation tests tend to 
mirror the structure of the data, in that checks perform tests on the cross-sectional 
and longitudinal portions of the panel data. Validation of data is usually performed 
prior to their use in the fitting of equations. 
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Obtaining reliable panel data relies as much on good measurement practice as it 
does on a set of validation tests. Good measurement, data entry and transcription 
practices (when used), can help ensure a clean run through validation testing. 
However, it is not generally possible to formulate one set of validation tests that is 
sufficiently comprehensive to constitute the definitive set of tests for all intended use 
of forestry panel data. Consequently, validation tests tend to be specific, with 
consideration given to the prevalent fonn of stand management. 

The standard type of validation tests, focusing on cross-sectional and longitudinal 
attributes, are not directed towards detecting forms of sampling bias that are 
associated with the initial creation of the pennanent sample plots. Even the cross­
sectional aspects of such testing are typically conducted within-plot and are not 
focused towards using inter-plot information. Similarly, longitudinal testing is 
generally conducted within-plot. However, many forms of sampling bias arise 
through a lack of appropriate randomisation. Consequently, bias detection requires 
an assessment of the underlying sample survey design structure to determine how 
randomisation issues have been approached and implemented. 

This work sets out an investigation of the suitability of an Irish Sitka spruce panel 
data set for growth modelling purposes. This required an investigation the data set 
for the presence of sampling bias, through deploying both graphical and analytical 
techniques. The investigation was performed largely, although not totally, at the 
cross-sectional level. 

Data and methods 
Data provenance 
Coillte Teoranta (the Irish Forestry Board) maintains the most extensive database on 
Sitka spruce (Picea sitchensis (Bong.) Carr.) in the Irish Republic. Initial 
measurements on research pennanent sample plots used imperial units. In 1972 the 
metric system was adopted; subsequent measurement continued in metric, the 
original data were not generally converted. The database includes many silvicultural 
thinning and spacing trials that have been conducted during the period 1963 to 200 I. 
Data used in modelling within this study were measured during the period 1972 to 
2001. The database was computerised in 2000 using Microsoft Access®, thereby 
allowing investigation through database queries. Other code components have 
facilitated assembling of data required for growth and yield studies. Table I contains 
a summary of the Sitka spruce data. 

In 2003, Coillte established within its production stands a small cross-sectional 
sample that consisted of volume data only. These arc the non-research data within the 
study - and comprise some 70 observations from thinned stands and 43 from 
unthinned stands. The location of the non-research plots was determined using a 
systematic sample survey design. Data were collected according to generally 
recognised sampling practices - particular attention was given to the collection of 
volume sample trees. Although designed as a systematic sample it was treated as a 
random sample in the study. The prospect of there being any form of cyclical bias is 
considered remote, but since several of the plots were measured in the same dormant 
season there is a possibility of cross-plot correlation due to climatic effects. 
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Table 1: Coillte~' Sitka spruce dataset. 

Sampling Variable(s) I 

method 

Non-research Systematic dbh, N, H and sectional 
data (Thinned) Sampling volumes 

(cross-sectional data set) 

Non-research Systematic dbh, N, H and sectional 
data Sampling volumes (cross-sectional data 
(Unthinned) set) 

Estate data Total Site index 
(Thinned) enumeration (cross-sectional data sct) 

Estate data Total Site index 
(Unthinned) enumeration (cross-sectional data set) 

Research data Plots in dbh, N, H, and sectional 
(Thinned) replicated field volumes (panel data set) 

experiments 

Research data Plots in dbh, N, H and sectional 
(Unthinned) replicated field volumes (panel data set) 

experiments 
I dbh. dIameter at breast heIght (1.3 m above ground level) 
N: stems per plot 
H: top height 

Quality 

Good 

Good 

Good 

Good 

Stat. ind. 
compromised 

Stat. ind. 
compromised 

Site index: top height (m) at age 30 (elapsed growing seasons since planting) 

Sample size 
n 

70 (volume) 

43 (volume) 

27,887 (site 
index) 

16,330 (si/e 
index) 

819 (volume) 

425 (volume) 

Further site index data were available at the sub-compartment level (the smallest 
unit of area that can be considered homogeneous for management purposes) across 
the entire Coi1lte estate. Consequently they give the most accurate site index 
representation possible for the estate2, and are termed estate data. 

Coillte's research data base was initially established as a set of spacing and 
thinning trials, which were mostly established using a randomised block design, 
Blocked plots were repeatedly measured, thereby creating a panel data set. While 
treatments were randomly assigned within blocks, having plots in close physical 
proximity to each other led to highly correlated growth model residuals, 

The existence of the non-research and estate data sets allowed comparisons with 
the cross-sectional component of the research panel data set to be made. Elucidating 
the cross-sectional nature of the research data can, in some circumstances, also lead 
to an understanding of its longitudinal behaviour. 

2 At the time of writing eoilhe's forest estate had 44,217 sub-compartments, some 27,887 
managed as thinned stands with the remainder unthinned. 
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Graphical analysis 
Volume datasets for thinned and unthinned plots were extracted from the research 
database: the thinned dataset had 819 plot-level volume observations, while the 
unthinned set had 425. The greater number of thinned observations was due to 
availability of observation data both before and after each plot was thinned. Site 
index was also available for each plot. 

The volume samples were part of a larger data set that includes plot re­
measurement data, allowing construction of growth trajectory data. The volume 
samples are a subset of those available within the research database. Specifically, 
they are the volume samples associated with the growth trajectory data. In this sense, 
they represent the cross-section associated with the panel data set. 

An obvious requirement of any sampling design that seeks to provide data for 
yield modelling is that plots should exist over the range of site indices found within 
the forest estate where the model is to be applied. Similarly, the frequency with 
which plots appear in site index classes should, by and large, be the same as the 
frequency that estate stands appear in that site index class. Conformity to these 
requirements is easily checked by plotting appropriate site index graphs. Site index 
histograms for thinned and unthinned stands were therefore plotted for research and 
estate data (Figure 1). 
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Figure 1: Site index distributionsjor (clockwise/rom bottom left) Research Unthinned, Estate 
Unthinned, Estate Thinned and Research Thinned. 
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It is apparent fTom a comparison of research and estate site index histograms in 
Figure I that research plots have been located predominantly in higber site index 
stands and there were no research (thinned or unthinned) plots in the two lowest site 
index classes that occurred within Coilhe's estate. 

Corroborative evidence as to the difference in site index distribution between 
research and estate data was obtained by testing the multinomial hypothesis Ho : Pi ~ 
Pie versus Ho : Pi '* Pie for some i. Herep io are the proportions appearing in each site 
index in the estate histogram of Figure 1, while Pi are the corresponding proportions 
appearing in the research histogram. The test was conducted using Pearson's chi­
squared test with test statistic 

Q; ~ ~(N) _n;:)2 
f:( np

J 

having k degrees of freedom (Mood et al. 1974). Strictly, the test requires 
independence of the underlying multinomial trials, a requirement that was not fully 
met due to the layout out of research plots within the experiment design blocks. 
Performing the test for the thinned crop was PCX

7 
> 625.5) < 0.001 and for the 

unthinned crop P(x' 7 > 1648.2) < 0.001. Figure I and the chi-squared tests therefore 
jointly indicated that the site index distribution within the experiment plots was not 
reflective of site index across the Coillte estate. 

The graphical analysis identified that the selection of sites for field experiments 
was biased towards higher productivity sites. Site index is not influenced by thinning 
practice (inclusive of no thinning) when thinning is conducted from below. 
Consequently many of the plots in experiments would have similar site indices due 
to the spatial proximity of the plots. This also suggests a lack of randomisation at the 
plot level. 

The overall sampling design for the experiments has not been recorded. It is 
highly unlikely that thc pattern of site indices indicated within the research data of 
Figure I would emerge from a sampling design based on a simple random sample of 
plots. More sophisticated, randomly based plot sampling designs, such as sampling 
via a probability proportional to size within a site index class, would serve to lessen 
the probability of observing the outcome associated with the research dnta in Figure 
I. These statements must be qualified, in that the establishment of permanent sample 
plots, for reasons of limitation of resources, generally takes place over a number of 
years. Forest estates can change over time with respect to their site index 
distributions, depending on factors such as soil fertility, effects of multiple rotations, 
and land transfers to, and from, other land uses. 

A number of methods are available to address data imbalance. Provided data exist 
within all site index classes, weighting can be used to when fitting models. However, 
where classes are not represented in the sample, then data imbalance can only be 
addressed by using additional data obtained by further sampling, or by use of data 
from an external source. 

Quantitative techniques for examining a panel dataset are applicable when either 
an independent panel or a cross-sectional dataset exist; these allow equation fitting 

84 



IRISH FORESTRY 
--

and model comparisons to be made. Here, volume equations over the research and 
nal data were used to further examine the cross-sectional 
ch database. 

non-research cross-seerio 
structure of Coi lite rescar 

'Sis Volume equation analy 
The volume equations us ed come from a general class ofvolumelbasal area quotient 

Garda (1984). The equations are fitted in quotient fonn so 
nce homogeneity. Their general form is 

equations introduced by 
as to improve error varia 

V 
~ 

B 

, 
'" f3 0 + ~f3, gJB,N,H,S) (I) 

Where 
f3~ f31' ... , fJ, is a set 0 f parameters, gi (B, N, H, S) is a predictor formed from its 

m' ha· l ), stocking N (stems ha· l ), top height H (m) and site 
age 30), through the operations of multiplication, division, 
icatian by a constant. 

arguments basal area B ( 
index S (top height (m) at 
taking a power or multipl 

Here site index (S) m ay be used to account for any site effccts (Garcia personal 
d the predictors are fanned as indicated above, the resulting communication). Provide 

equation wil1 always be linear in its parameters. Stepwise regression is then a 
que for model identification and fitting putposes. particularly useful techni 

Fitting equation (1) to the combined researcb thinned and unthinned data resulted 
Table 2. in the model specified in 

The model has an R 2 of 0.9627 and an adjusted R2 of 0.9625. 
The dynamic re-weig hting scheme available within SAS® PROC REG (SAS 

d to screen observations during model fitting. Observations 
ntised residual of more than 3 were excluded from model 
4 observations being removed. 

Institute 1990b) was use 
having an absolute stude 
fitting - this resulted in I 

The model appears u nder a range of fitting diagnostics to be adequate but upon 
ume predictions, biases are observed as described below. closer scrutiny of the vol 

Table 2: Sitka spruce resear. ch data - volume/basal area quotient regression. 

Variable Parameter Std Error Pr> It I 
Intercept 4.11729 (0.3627) < 0.0001 

H 0.26687 (0.0144) < 0.0001 

HI,fN 4.71047 (0.5277) < 0.0001 

IIH -33.32451 (2.6576) < 0.0001 

HIN -64.28313 (7.8327) < 0.0001 

100lS'H 1.00465 (0.3152) 0.0015 

SIS 1.69270 (0.4542) 0.0002 

S'SIS -0.09036 (0.0139) <0.0001 
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Applying the equation specified in Table 2 to predict volumes (to 7 cm small end 
diameter (SED)) for each unthinned research observation results in the predictions of 
Table 3. 

Here V7 denotes mean observed stand volume to 7 em SED, V7hat is estimated 
mean stand volume to 7 em SED, V7rsd denotes the mean residual when estimating 
to 7 cm SED. Finally, V7rpe is relative prediction error for V7 being calculated as 
the mean of quotients of the form (V7-V7hat)N7. For the unthinned research data, 
the result indicates that there is a 2.33% over-estimation of volume to 7 em SED as 
assessed by a mean relative prediction error (equivalently mean of ratios). 

Applying the equation in Table 2 to predict volumes for the research thinned 
stands leads to the results in Table 4. 

For the research thinned data there was a 0.37% under-estimation of volume to 7 
em SED via a mean relative predictive error statistic. It is apparent that the research 
equation in Table 2 is better at predicting the thinned data than the unthinned data. 
This is a reflection of the observation weighting employed. During fitting some 819 
thinned and 425 unthinned observations were used. 

Having observed the biases arising from the research volmne equation the 
question arises as to whether they are statistically significant? The lack of statistical 
independence within thc research data (see Table 1) precludes the direct testing of 
biases via volume equation parameters. Such an approach would test for common 
parameters for thinned and unthinned stand volume equations. A probabilistic 
analysis can, however, be conducted using a related set of findings. The same pattern 
of biases was observed when (unealibrated) volume equations were fitted to research 
data from four additional species: Douglas fir, lodgepole pine, Norway spruce and 
Scots pine (unpublished work). In each case, the thinned volume observations were, 
on average, under-predicted, while the unthinned observations were over-predicted. 

Table 3: Research unthinned data mean predictions. 

Variable Observations Mean 

V7 425 364.6903 

V7hat 425 373.5528 

V7rsd 425 -8.8625 

V7rpe 425 -0.0233 

Table 4: Research thinned data mean predictions. 

Variable Observations lv/ean 

V7 819 3123422 

V7hat 8]9 309.9420 

V7rsd 8]9 2.4003 

V7rpe 819 0.0037 
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With respect to each volume basal area quotient equation fitted over thinned and 
unthinned observations, the sum of the theoretical residuals may be partitioned as 

~£, ~ ~e} + ~ek 
, ) k 

where the first summation on the right is taken over the thinned observations and 
the second over the unthinned. The observed residuals on any volume basal area 
quotient equation are required to sum to zero. This follows from the normal equation 
associated with the constant parameter (see Seber 1977, p 47). A null hypothesis of 
there being no difference in the predictive ability of each volume equation over its 
respective thinned and unthinned stands requires the expected values of the sum of 
theoretical residuals be zero i.e. 

and 

By appealing to the central limit theorem (Capinski and Kopp 1999) we can 
assume that the theoretical residual sums 

and 

are nonnally distributed. Normal distributions arc symmetric and consequently 
the mean, median and mode assume a common value of zero. From nonnal 
distribution theory we can make the statement 

P[~£) > 0] ~ l/2 
j 

or equivalently in terms of the mean 

P[nl-l~e} >0]~1I2 
) 

where n
1 

is the number of thinned observations. A similar statement holds with 
respect to sum and mean for the unthinned errors. 

The observed mean residuals for any volume basal area quotient regression, 
although theoretically correlated, should also tend to follow a normal distribution. 
Consequently, we anticipate the observed mean residuals for thinned and unthinned 
stands to be n011l1ally distributed w'ith mean, median and mode of zero. It is 
important to note that the probability of 1/, that the observed residual sum, or mean, 
exceeds the median (50% quantile) is the same for each of the five volume equations. 
Given that all five equations examined had observed thinned mean residuals 
exceeding zero, then under the null hypothesis the probability of this event 
happening on the basis of chance is determined from the binomial distribution as . 
This differs markedly trom the observation that 100% of trials had thinned mean 
residuals above their median value, and is strongly suggestive of the presence of bias 
associated with thinned and unthinned predictions. 
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The non-research data do not suffer from the same lack of statistical 
independence as do the research data. In teTIllS of plot selection these data are known 
to have been collected in a manner that was virtual1y equivalent to a random sample. 
Volume sample trees were randomly selected across the range of merchantable trees. 
The non-research data consist of a volume cross-section over some 70 thinned plots 
and 43 unthinned plots. 

In Table 5 results are presented from fitting a volumelbasal area quotient 
regression to non-research volume observations. 

The model was fitted over the non-research thinned and unthinned stand volume 
observations. It has an R2 of 0.9627 and an adjusted R' of 0.9625. 

The non-research volume equation allowed the construction of Table 6, which 
shows mean observed, predicted, residual and relative prediction error values fOT 

thinned stands. 
The mean observed, predicted~ residual and rc1ative prediction error values for 

the volume equation for unthinned non-research stands are shown in Table 7. 
The hypothesis model given in Table 5 can be tested against a maximal model, 

where separate volume equation parameters are fitted for thinned and unthinned 
stands. The test provides an indication as to whether separate regressions are required 
for volume predictions in thinned and unthinned stands. 

Table 5: Non-research data - volume/basal area quotient regression. 

Variable Parameter Std. Error Pr> It I 
Intercept 0.92527 (0.4201) < 0.0001 

H 0.41616 (0.0143) < 0.0001 

N*HI1000*B -1.97212 (0.2799) < 0.0001 

BIH 0.19608 (0.0575) < 0.0001 

Table 6: Non-research thinned data mean predidions. 

Variable Observations Mean 

V7 70 394.2157 

V7hat 70 393.9792 

V7rsd 70 0.2364 

V7rpe 70 -0.0042 

Table 7: Non-research unthinned data mean predictions 

Variable Observations Mean 

V7 43 378.5654 

V7hat 43 379.1120 

V7rsd 43 -0.5466 

V7rpe 43 -0.0050 
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Table 8: F-test of common volume equation parameters for thinned and unthinned stands. 

Source ql"variation degrees a/freedom sum of squares mean square 

Resid. hypothesis model 109 30.5236 

Resid. maximal model 105 29.5297 0.2812 

Difference for test 4 0.9939 0.2485 

From Table 8 the quotient of the Difference mean square and the Maximal Model 
Residual mean square is 0.8835 and is distributed as F 4. lOY The test indicates that the 
null hypothesis of a common volume equation for thinned and unthinned stands 
cannot be rejected. 

The conditions required for implementation of the test in Table 8 can be 
questioned (see Discussion). However, further support for the test result comes from 
the comparatively small magnitudes of the biases and the near zero relative 
prediction errors in Tables 6 and 7. 

Discussion 
The statistical test used for the non-research volume observations requires statistical 
independence between observations on plot volume. Also required is homogeneity of 
error variance. It is possible that the volume equation residuals would exhibit some 
degree of auto-correlation associated with within plot predictions over small time 
intervals in the absenee of thinning. Cross-correlation effects betw"een plots arise 
largely through climatic effects and are most pronounced when plots are re-measured 
in the same year. Factors that should reduce the impact of the correlation structure 
are longer periods between subsequent re-measmement ofplots and the fact that not 
all plots are measured in the same year. The effect of the correlation structure has 
been ignored here. 

A more comprehensive analysis would involve building an error component 
model that included serial- and cross-correlation tenns and testing the significance of 
these effects. In a study of error component models for forestry yield models 
Gregoire (1987) found that ordinary least squares had lower prediction errors than 
models fitted with error components attached. Gregoire '5 work suggests that it may 
be difficult to formulate appropriate error component models. 

The biases found in the research data volume predictions are likely to be 
consistent with any of the following causes: 

1. there is a positive thinning effect which occurs when thinning is properly 
performed, 

2. some form of volume equation inadequacy (other than a thinning effect or 
sampling bias which can lead to volume equation difficulties) or 

3. there is a volume sampling bias. 
It is possible that these causes may aet in concert, However, the investigation was 

restricted to single effects under the assumption - that, at most, one of these causes 
is active, This restriction is very stringent but it docs facilitate discussion of the 
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possible causes. It can be argued that the likelihood of more than one cause being 
active is small. 

Any thinning effect is envisaged to act through facilitating stem diameter growth 
above the point of dbh measurement, and result in higher stem volumes for thinned 
stands. The mechanism for any such effect is envisaged as a photosynthetic response 
of the remaining tree crowns to higher light intensity following removal of 
competition in thinning. Thinning in the research plots was closely specified and 
supervised to ensure consistent levels of thinning over plots. 

If a thinning effect were the cause ofthe differences observed in the research data 
then it should also express itself within the non-research data and be capable of 
detection using statistical tests. The fact that no statistical difference was observed 
bet\.veen thinned and unthilUled volume equations for the non-research data suggests 
however that a thinning effect cannot be active. 

If there are inadequacics in the volume equation that led to the observed 
differenccs in the research data then these should be apparent when fitting volume 
equations to the non-research data and again be capable of detection using statistical 
tests. The lack of statistical difference between thinned and unthinned volume 
equations for the non-research data suggests that the argwnent for volume equation 
inadequacy is not strong. Further support for the volume equation comes from this 
class of equation being widely used for both thinned and unthinned stands without 
encountering bias problems (Garcia 1984,2003). 

The suggested cause of additional volume sampling bias is most likely associated 
with the subjective selection of larger volume sample trees. Selecting larger volwnc 
sample trees leads to a larger mean volume per tree, which in turn leads to, a larger 
plot volume or volume per hectare, when multiplied by the appropriate stocking. 
Stated alternatively, any selection bias towards larger volume sample trees will be 
reflected in the parameters of the individual tree volume versus basal area straight 
line (regression) used to calculate mean volume per tree, and also in the parameters 
of the volumelbasal area quotient regression used to calculate volume per hectare. 

Plot location could also act as a fonn of sampling bias contributing to the 
differences in volume equation residuals. Many of the experiments used as data 
sources were established using replicated experiment designs. Any plot selection bias 
in this instance would be expressed at the block level (block selection bias) and 
possibly even the experiment level. 

If a sample bias occurred with respect to research data it would not be anticipated 
to occur with non-research data. Plot selection for the non-research data used a 
systematic sampling design. Although such designs are capable of admitting cyclical 
fonms of bias, their behaviour is expected to closely parallel a fully randomised 
design. Moreover, the volume sample trees for the non-research plots were selected 
across the range of observed diameters, thus ensuring acceptable detennination of the 
parameters in the individual tree volume versus basal area regression. 

The statistical test conducted on the non-research volume equation is consistent 
with a sampling bias not being present, but suggests a sampling bias in the research 
volume data. 
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Although this analysis suggests a bias in the research volume data it does no! 
provide a definitive indication as to its source. In an endeavour to trace the source of 
the bias the relative prediction errors for the research thinned data were calculated 
and subsequently sorted. Of particular interest were observations with observed 
values (plot volumes as determined through sectional measurement and 
volumelbasal area regression) being under-predicted by the volume equation, as 
these may suggest that the observed values are too high. These observations were 
examined to detennine the range of the breast height diameters associated with the 
volume sample trees compared with the breast height diameter range for the crop 
trees (Table 9). 

Table 9: Crop and volume sample hreast height diameter range datal, 

Sample dbh (em) 

Plot Year Crop Volume Min Max Range 

CCA057901 1979 MC 6.4 20.2 13.8 

1979 TH 7.2 16.0 8.8 

1979 TH 11.1 15.2 4.1 

CCA057910 1978 MC 7.2 18.5 11.3 

1978 TH 7.5 17.5 10.0 

1978 TH 9.4 14.8 5.4 

CCA057902 1978 MC 5.7 16.8 11.1 

1978 TH 8.0 17.5 9.5 

1978 TH 9.9 14.5 4.6 

CCA057909 1978 MC 8.2 17.8 9.6 

1978 TH 81 17.5 9.4 

1978 TH 10.1 15.2 5.1 

CCA057906 1978 MC 5.9 17.8 11.9 

1978 TH 7.1 16.9 9.8 

1978 TIl 9.6 15.9 6.3 

CAL018109 1980 MC 2.1 16.9 14.8 

1980 TH 7.7 13.8 6.1 

1980 TH 8.0 14.1 6.1 

CAL018108 1980 MC 7.3 15.3 8.0 

1980 TH 3.5 13.5 10.0 

1980 MC 9.0 13.9 4.9 

1980 TH 8.3 12.2 3.9 

I Me (mam crop), TH (th11lmng) 
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The results in Table 9 were obtained from the first II plot volumes considered 
after sorting on relative prediction error. It is apparent that the diameter range 
associated with the volume sample trees is generally small when compared with the 
range of diameters associated with either the main crop or the thinning trces. In 
addition, an examination of the dbh measurements for the volume sample trees 
invariably shows that they have been sampled towards the upper end of the plot 
distribution. The first six plots in Table 12 contain information for the first year of 
neutral systematic thinnings. The volume sample trees arc for the thinned crop 
portion, but in this context they are also llsed to calculate volumes for the main crop. 
The lack of adequate range for dbh measurements illustrated above is not confined 
to neutral thinning schemes as the last observation in Table 9 illustrates. Nor is it 
confined to thinned plots as the same problem can be identified in unthinned plots. 

The impact of sampling volume sample trees over a restricted range can be 
understood by examining the variance associated with parameter estimates in the tree 
volume v basal area regression. The equation has fonn: 

E(e, ) ~ 0 F(c,') ~ 0 2 

Where the dependent variable Y
j 

denotes tree volume and the independent 
variable Xi denotes tree basal area. The variance associated with the intercept 
parameter is 

, 1 ~n , a - x 
u (~) __ n=, __ ' .ar a ~ 

" 2: (x, - x)' 
1=1 

and that of the slope parameter is 

(T2 
Var(J1) ~ -n---

~(x, -x)' 

Parameter standard errors may be obtained by taking square roots of the above 
expressions. Larger standard errors are directly linked to sampling over a restricted 
dbh range as they become larger as th~ denominator expressions become smaller. The 
denominators are an expression that depends on the range of the sampled data. The 
denominators can be maximised by taking data at the extremes of the ranges. 
Choosing half the values at each end ofthc range results in a D-optimal design (Seber 
1977). Although sampling at either extreme of the range results in aD-optimal 
estimation of the slope and intercept parameters, this approach faces a difficulty 
within a forestry setting. Merchantable trees have a limiting lower dbh and non-
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merchantable trees may fall below this. It is sensible to restrict the volume sample 
trees to merchantable trees. At each end of the merchantable dbh range there may be 
abnormal trees either suffering from suppression at the lower end~ or having 
enhanced upper stem diameters at the upper dbh range. Consequently, a more 
pragmatic approach may be to select volume sample trees randomly across the 
merchantable range. The important point is to sample across the merchantable range. 

Given the information to hand, therefore, it is possible to conjecture that the 
observed biases found in volume equation residuals arise through taking volume 
sample trees towards the upper end of the dbh distribution. For thinned srands, it is 
envisaged that the selection has also been biased towards trees with enhanced upper­
stem diameters. This conjecture could account for the patrern of observed biases. 

A further issue relating to Coillte's database is the intention ofthe original design 
versus its intended use in a yield modelling setting. The database is aggregated, in 
the main, from repeated measurements in replicated field experiments that were 
originally designed to examine thinning and spacing effects. These designs are 
capable of analysis using mainly analysis of variance techniques (e.g. split-plot or 
repeated measures analysis) for analysis of cumulative and incremental growth. In 
the experiment design, treatment combinations are randomised to plots, within 
homogenous blocks. This allows more accurate and precise treatment comparisons to 
be made, as biases and crror variances are reduced. In the context of yield modelling, 
however, longitudinal observations are made on plots that are treated as being 
statistically independent. True statistical independence will never hold in a forestry 
context as different plots are always subject to similar climatic effects over any given 
time period. 

Even if the established set of experiments were randomly located across the Irish 
forest estate, the set of plots within them would not be. Blocking plots in the 
experimental design setting requires homogeneity within blocks - a desirable feature 
when detecting treatment differences. Whereas blocking, in terms of yield modelling, 
restricts randomisation at the plot level, increases the cross-correlation between 
plots, and further erodes statistical independence between plots, which is already 
compromised through climatic effects. Parameter estimation techniques for 
modelling growth equations are also compromised in that the vast majority of growth 
component fitting techniques are developed around the assumption of statistical 
independence between plots. 

The sampling biases considered impact on the panel data set in different ways. 
The impact of selecting volume sample trees over a limited diameter range is purely 
cross-sectional in nature. In terms of fitted models this would affect volume and 
assortment equations. The impact of blocking plots impacts on all fitted models as 
does the absence of data identified through graphical analysis. 

These volume sample tree result has been deduced by undertaking comparative 
statistical tests and making reasonable aSf.;umptions as to how those tests should 
behave between research and non-research data sets. Detection of the plot cross­
correlation result arises through appreciating the different requirements III 

assembling data for treatment comparison and yield modelling purposes. 
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It is important to realise that the data omission problem and the increased plot 
cross-correlation issue are not associated with the set of experiments, per se, rather 
they arise when the repeated measurements are aggregated across experiments to 
fann a panel data sct - the experiment data have only been shown to be deficient with 
respect to the estimation of plot volumes. Further, aggregation across valid repeated 
measures experimental design data does not guarantee the creation of a valid panel 
data set useful for yield modelling purposes. 

The prospect of a thinning effect giving rise to increases in upper-stem diameters 
would have implications for growth modelling in that it suggests some measure of 
upper-stem development would be required to fully account for stand structure and 
growth. If higher upper-stem diameters were observable through cross-sectional 
sampling then there should be some associated behaviour in the longitudinal 
direction. 

Growth modelling theory suggests that growth increments for plots with higher 
upper stem diameters should bc enhanced. This follows from !be fact that most 
univariate growth models can be decomposed multiplicatively with the structure in 
(2), which indicates that the increment will be proportional to the size, at any 
specified time. Consequently, it could be anticipated that greater growth increments 
would arise from plots exhibiting higher upper stem diameters. 

d y = f(t) Y 
dt 

(2) 

Where y is some measure of size and f(t) is a declining, or an eventually 
declining, function of time, so as to provide a declining relative growth rate (y'/y). 

Models that can be classified in this way include Bertalanffy-Richards, 
Gompertz, Levakovic I, Levakovic III, Korf and Sloboda (see Table I, Zeide 1993). 

Conclusion 
In assessing Coillte's database for yield modelling purposes three forms of sampling 
bias were identified. The first, through graphical analysis, indicates that Coillte's 
research data for Sitka spruce contains a sampling bias that omits lower site index 
material. The second, identified through the analysis of volume equation predictions, 
is associated with volume sample tree selection. The third is experiment blocking, 
which reduces randomisation at the plot level, increases cross-correlation between 
blocked plots, leads to the eroding of statistical independence between plots and 
adversely affects parameter estimation in yield modelling equations. 

In the context of fitting growth models the data omission issue influences all 
types of equations in any growth modelling system. The volume sample tree bias 
impacts on only the volume related components in a growth modelling system -
these are the volume and assortment equations. The lack of randomisation at plot 
level typically impacts on all types of equation within any growth modelling system. 
In the context of analysing the established experiments as experiment designs, only 
the volume sample tree bias is of concern. The data omission and randomisation 
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issue only arise once yield modelling is contemplated and data aggregation ensues. 
Clearly, the aggregation of data across repeated measures experiments has led to 
unanticipated consequences that have impacted negatively on the data requirements 
for yield modelling. 
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