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Abstract 
Ad hoc techniques were used to fit :>tand-level growth models for Sitka spruce in Ireland in the 
presence of sampling biases. Panel data, sourced by aggregation over a set of repeated 
measures experimental designs, admitted sampling biases when considered as a data set for 
yield modelling purposes. Remedial action towards sampling imbalances was taken, whenever 
possible, through the use of weighting techniques. Further action to address data omissions 
involved using data substitution. The growth component model used was the multivariate 
Bertalanffy-Richards model fonnulated by Garcia. The model allows aggregated state-space 
representations of stand development to be formulated and fitted. For stand simulations, 
growth equations were augmented with functions accepting state variables as arguments and 
compute basal area reduction during any thinning, stand volume and volume assortments. 

Keywords: Assortments, growth models, multivariate growth, Sitka spruce, weighting 
techniques. 

Introdnction 
Sitka spruce (Picea sitchensis (Bong.) Carr.) was first introduced into Ireland from 
British Columbia in the 1830s. Publicly funded afforestation followed in 1904 (Joyce 
and OCarroll 2002). The species has flourished within its Irish setting and a 
prosperous forest industry based on its utilisation has developed. Since the 1 960s, 
this industry has relied heavily upon Forestry Commission (FC) yield tables and the 
stand management concepts surrounding them (Johnston and Bradley 1963). 

However, there are aspects of modem forest management that the FC yield tables 
are less equipped to deal with Specifically, the FC tabular models are not well suited 
to introducing ideas from economics regarding the management of natural resources 
and optimal stand or forest management. Consequently, the aim of this work was to 
develop an alternative growth projection mechanism for Sitka spruce that is 
amenable to simulating a wide range of management alternatives specific to Irish 
conditions. Two Sitka spruce models were developed - a model for un-thinned stands 
and a model for thinned stands. 

Reliably constructed growth models that permit growth and yield forecasting are 
crucially important for management of forest plantations. Silvicultural and economic 
planning at the stand and forest estate level are contingent on being able to forecast 
growth accurately at the stand level. Until the pioneering work of Clutter (1963) the 
problem of determining annual increments within forest stands, i.e. growth 
assessment, was conducted separately ITom that of detennining stand aggregates or 
yield assessment. Clutter showed that the increments could be derived from the 
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associated yield curves and vice-versa by the mathematical operations of 
differentiation and integration. 

A plethora of methods have been developed to represent forest growth in even­
aged stlmds_ These can be classified using a relatively small number of criteria that 
convey the essential differences. Static models assume that stands are managed to 
some prescribed pattern over the rotation. Within a European context the Fe 
Management tables (Forestry Commission, 1981) is the best-known cxample_ 
Dynamic models, on the other hand, do not assume prescribed management regimes 
and therefore can be used to forecast the outcome of a wider range of thinning 
practices_ These models rely on modelling incremental changes in the variables of 
interest over time_ The corresponding yield is then obtained by integrating or 
summing the incremental changes. 

Garcia (1979) gave a fillip to dynamic models through the development of 
systems of differential equations to model forest yield. The multivariate extension of 
the Bertalanffy-Richards model developed by Garcia permit simultaneous estimation 
of growth component equations can take place. Garcia introduced further ideas from 
systems theory into a forestry context, to describe how a forest stand evolves over 
time. This requires: 

1. an adequate representation of the system (stand variables) at any point in time 
- the so called state of the system, and 

2. estimates of the rate of change of state, and of the current value of any external 
control variables_ 

Using such a framework the central elements of differing yield prediction 
systems can be compared. To illustrate, models based on individual tree position 
maintain a more detailed state description compared with those that operate at the 
stand-level. From a practical forest management viewpoint, a growth model must 
provide the requisite forecasts without too much in the way of operating overheads, 
This requirement has led to growth models that are used for management purposes 
being developed at the aggregation level of a forest stand, Forest level prediction is 
then made through aggregating stand level predictions. 

This work sets out by describing a class of functions that jointly constitute a 
Garcia yield model. This class is augmented with a function for generating 
assortments. The fitting of these functions in the presence of sampling biases is 
subsequently described_ General aspects relating to the deployment of the resulting 
dynamic yield model are discussed_ 

Methods 
The development of stand-level growth models for Sitka spruce proceeded by 
adopting the state-space modelling methodology advocated by Garcia (1984)_ That 
is, a small number of stand variables were chosen to represent the stand. Future states 
of the stand can then be determined from the current state, provided any future 
actions such as thinnings are detailed. The variables included in the state allow the 
subsequent calculation of quantities of interest such as stand volumes, log 
assortments and thinning reductions. Thus, a stand volume equation is employed to 
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estimate stand volumes; an assortment generator predicts proportions of stand 
volume found in various log categories; and a thinning equation calculates basal area 
or stocking reductions during any possible thinning. A formal description of each 
component sub-model is now given. 

Growth equations 
The growth projection mechanism employed consisted of a system of differential 
equations fonnulated by Garcia (1979). The system is sufficiently flexible to permit 
both empirical growth modelling, where no assumptions are made as to relations 
between stand variables, and modelling in limited data situations where known 
biological principles arc used as a basis for fanning equations (Garcia and Ruiz 
2003). 

In fonnulating this system, Garcia proceeded by way of generalising cquation (l), 
the basic univariate Bertalanaffy-Richards model expressed as a linear differential 
equation in xc. Here variable x is some measure of size such as top height and 
parameters are a, band c. 

dxc 
___ axe +b (1) 

dt 
The power transfonn (2) is required to generalise the scalar exponential tcnn xC 

present in equation (I) to multivariate situations. The left hand side of (2) employs a 
non-standard mathematical notation, a vector being raised to a matrix power. This is 
computed using the expressions On the right hand side of the identity (assuming the 
logarithm and exponential functions are extended to a vector argument on an 
element-by-element basis). 

XC ",exp(C Inx) (2) 

Here x is an arbitrary n dimensional vector and C is an arbitrary n x n matrix. To 
illustrate_ if the state vector used to represent the stand is chosen to be basal area (B) 
(m' ha·'), stocking (N) (stems ha·'), and top height (H) (m), then take x ~ (B, N, H) T 

and C as a 3 x 3 matrix of reals with elements c .. , then by extending the exponential 
'J 

and logarithm functions as indicated above the resultant 3 x 1 vector can be 
expressed as 

Bell N e12 
Heu 1 

xc = Be21Ne12He23 

B'" W" H 'n j 
The above illustrates that raising the state vector to a matrix power is a form of 

coupling transfonnation, since a new vector has been formed whose elements are 
multiplicative combinations of the original vector elements raised to appropriate 
powers. 
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The analogous multivariate system is specified as 

dxc 
__ =Axc + b (3) 

dt 
The above approach proceeds from the univariate to the multivariatc model by 

way of exploiting the power transform given in equation (2). Within the differential 
equation system (3), a single equation is devoted to predicting top height growth. 
This equation also governs how the effects of site arc incorporated into all of the 
system equations in (3). The top height development equation has equation form (I) 
which, assuming H(t) denotes top height in metres at age t, may be expressed as 

dF c c 
--=h(a -H) 
dt 

Whose solution is 

(4) 

When parameter b is used as the site indexing parameter then the site index 
curves that arise are tenned polymorphic and curves differ by what amounts to a time 
scaling. Parameter a is then interpretable as the asymptotic top height while 
parameter c can be regarded as a linearisation parameter, since equation (4) is a linear 
differential equation in the variable IF Equation (4) has been integrated subject to 
the initial condition H(to!~Ho' 

From the solution of equation (4), b may be expressed in terms of the site index 
S (top height at age 30) and the stand top height initial condition 

1 [a' -S' 1 h=---in 
3D-to a' -H; 

(5) 

Should a or c be chosen as the site indexing parameter then anamorphic site 
index curves would arise. Under a polymorphic site index curve the effect of site 
within the system (3) can be accommodated through scaled time. This means A and 
b change by a multiplicative factor to express site differences, while C is 
independent of site. Consequently, in system (3) there is no relationship between site 
and the state variables (Garcia 1984). 

Assuming the state vector has elements x ~ (B, N, H)T then the following form 
of system (3) was employed to represent growth on an empirical basis for thinned 
and un-thinned stands. The derivatives are now taken with respect to 't = hI, the 
scaled time variable. 
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(6) 

In telTIlS of matrices A and C now have dimension 3 x 3, b is a 3 x 1 vector. 
Garcia (1984) deployed a useful version of this model that arises from setting a22 ~ 

a23 = h2 = e2l = C
23 

= 0, Then fitted values of e22 and a21 baving opposite signs mean 
that stocking levels will decrease over time. Setting a number of parameters to zero 
also diminishes the number of parameters to be found_ This simplified model was 
used as a base model prior to the fitting of system (6)_ 

Garcia (1984, 1989) also considered extensions to system (6) so as to examine 
responses to fertiliser treatments and thinning effects. Both can be examined using 
multiplier functions which are effectively time scaling devices_ Thinning effects can 
also be modelled through augmenting the state vector through the use of an 
additional state variable R representing relative closure or site occupancy after 
thinning_ Relative closure has values between 0 and L Assuming full closure is 
represented by a value of I, its value after a thinning is reduced to the basal arca of 
the thinned stand as a proportion of the basal area prior to thinning_ After thinning, 
closure is assumed to increase towards its asymptotic value of 1. Relative closure is 
an unobservable variable in that its value is not directly available at all times through 
measurement, however, it is still amenable to inclusion within a state vector since the 
means by which its value changes are known. 

System (6) is linear in tbe transformed state vector XC and consequently can be 
integrated analytically between times that do not involve thinning. Given the initial 
state Xl at time tl' Garcia (1984) indicates the expected solution at time t2 as 

(7) 

Where A (diagonal matrix of eigenvalues) and P (matrix of left eigenvectors) 
form the eigenvalue-eigenvector decomposition of the matrix A = p-l AP, and a = 

A"'b is the asymptote vector for system (3). Note the presence of the time scaling 
parameter b within the exponential term - this represents the effect of site adjusting 
time. 

Volume equation 
A common stand level volume equation that predicts the volume basal area ratio as 
a function of top height is 

V / B<;;;a+bH (8) 
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Where a and b are parameters to be detennined. The ratio VIB is used in that it 
tends to induce homogeneity in the error variance. 

Beekhuis (1966) obserYed that equation (8) cannot be valid both before and after 
a thinning. Thinning from below tends to remove trees of smalieT height so the 
volume to basal area ratio must increase aflcr a thinning event. Garcia (1984) 
suggested a modification whereby further terms involving N or B are admitted as 
predictors. Site index, S, may also be llsed to account for site effects (Garcia, pers. 
comm.). A stand-level volume equation is then generally determined as 

V n 

B" f3 0 + ~f3i g,(B,N,~lS) 

The right hand side of equation (9) denotes that the volume to basal area ratio is 
expressed as a linear function of terms involving basal area, stocking, top height and 
site index, Each gj function is a multipl icative expression of its arguments that are 
possibly raised to powers. Explicitly, equation (9) is expressed in tenns of a predictor 
set such as H, HI..JN, NHIB, llH, HIN, BIH, SIB, SIB' and the model identified by 
stepwise linear regression techniques. 

Thinning equation 
The thinning equation proposed by Garcia (1984) allows faT the detennination of 
post-thinning basal area (resp. stocking) when the top height, pre-thin basal area, pre­
thin stocking and post-thin stocking (resp. basal area) are known. When expressed as 
a ditl"erential equation it has the fonn 

dlnB _ Bb N' Hd (10) 
dlnN - a 
The left hand side of (10) is interpretable as the percentage change in basal area 

arising from a percentage change in stocking. This interpretation follows from the 
expression d In Bid In N ~ (dB/B)/(dN/N). Consequently, equation (10) is a model 
of the stocking elasticity of basal area (Silberberg 1990). 

The equation is separable and on integration its solution is obtained as 

InB ~ -i-~nf B~b - a: Hd (N' - N~)] 
Where H denotes the top height, Bo and No are the pre-thin basal area and 

stocking and the post-thin values are Band N. The model parameters to be 
detennined by nonlinear least squares are a, b, c, and d. 

A useful property of ditl"erential equation models is that they are closed under the 
operation of composition. With respect to the thinning equation this means a thinning 
removing 200 sterns ha- I followed immediately by another thinning removing 300 
stems ha_1 results in the same basal area reduction as a thinning of 500 stems ha.!. 
This consistency property will always arise when differential equations are used as 
transition functions. System (3) gives rise to a similar consistency condition when 
projecting over time (Garcia 1994). 
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Using the thinning equation (11) in conjunction with the stand volume equation 
(9) allows for thinnings to be performed by volume reduction. The thinning equation 
permits the stand volume after thinning to be expressed as V(B, N(B; Bo ' No!, H), 
where post-thin stocking is given as a function of post-thin basal area (pre-thin basal 
area and stocking appear as parameters within the thinning equation). This means 
Newton's algorithm (Conte and de Boor 1972), or somc similar technique for 
locating function roots, can be deployed to reduce thc basal area from its pre-thin 
level, to post-thin levcl, to simulate the extraction of a specified yolume ofthinnings. 
Similarly, it is possible to simulate the effect of thinnings by increasing quadratic 
mean diameter. The procedure would bc to employ a root finding technique to reduce 
B and at each step, use the thinning equation to predict N(B; B~ No! and consequently 
recover the quadratic mean diameter (terminate the step-wise procedure with success 
if the quadratic mean diameter has reached its target value). 

Assortment equation 
An assortment model is used to calculate assortments for any production thinnings 
and the crop. Generally, the problem of estimating assortments is that of delineating 
a set of categories (log classes), and determining the proportion associated with each 
category (assortment), such that the proportions sum to unity. Past endeavours to 
solve this problem have focused on sectioning a diameter distribution (Garcia 1981) 
and subsequently employing a taper function to calculate the quantities of interest. 
More recently, the problem has been addressed using techniques that model the 
proportions directly, such as multinomial response models (Arabatzis and Gregoire 
1990). These arc a class of what are known as limited dependent variable regression 
models. 

The model defined as Unordered MultiNomial Logistic (UNML) by Arabatzis 
and Gregoire (1990) was employed here largely because of its flexibility in 
pelTI1itting differing numbers of predictors to be associated with each category, and 
because it does not require any common slopes assumption as does the Ordered 
MultiNomial Logistic (OMNL) model. Assuming a variable Y is used to indicate the 
J+l categories, indexed 0 through J, then the UNML model is expressed as 

r. ] exp~'JXij ) 
PrlY. = j = ----;-.1 ---'-'--~-

1+ 6exp~kXik) 

Pr[y, = 0]= -~J _I __ 

1+ 6 exp~~X'k ) 

(12) 

Here i denotes an observation subscript and j a category subscript. While xik 
denotes predictors associated with category k and observation i. Finally f3k denotes 
parameters for category k. The probability of category 0 is determined by subtraction. 
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The equations given in (! 2) can be adapted to obtain assortment predictions for 
crops with, or without, thinning. The approach involves partitioning the predictors 
associated with each category (the observation subscript has been dropped for 
convenience). 

Where 

TTl T X. ~ Xj! X. 2 .I J (13) 

Xj I is the set of predictors for category j associated with the main crop; and 
Xj 2 is the set of predictors for category j associated with the thinning. 

The underlying idea is that an assortment for a thinning is obtained by way of a 
modification to the pre-thin crop assortment. The extent of the modification to the 
crop assortment depends on the severity of the thinning. The predictor variablcs in 
the vector x , form part of the prediction only if a thinning assortment is being 

J -
predicted (they are defined to be zero otherwise). Generally, variables in "i 2 have 
special structure that provides a measure as to the extent ofthinning. This is achieved 
by ensuring they are functions of No - NI, B 0 - B l' D I - Do' Here No and NI are the 
stocking per hectare before and after thinning, Bo and B! the respective basal areas, 
and Do and D, rcspective quadratic mean diameters (expressed in centimetres). Ratio 
tenns can also be utilised. 

Predictions are made for two log categories. Category one is an estimate of the 
proportionate volume of logs of at least 3 m lcngth, and having small end diameter 
(SED) equal to or greater than 20 em. Category two estimates the proportionate 
volume oflogs having small end diameter in the interval 14 to 20 cm. Category 3, is 
obtained by difference from unity, and estimates the proportionate volume in the 7-
14 em SED category. 

The standard multinomial model has been modificd in two respects. Firstly, 
categories are permitted to have a different numbers of predictors associated with 
them. Secondly, a weighted form of the likelihood used in parameter estimation has 
been formulated to cope with data imbalances (see Appendix I). Using a different 
number of predictors for each category means good model identification can take 
place via a log odds ratio and stepwise linear regression techniques. 

Data provenance 
The bulk of the data used in fitting models were extracted from CoiIlte Teoranta's 
(the Irish Forestry Board - the state commercial forestry company) permanent 
sample plot record system. The associated database contains records from many 
silvicultural and thinning trials established during the period 1963 to 2001. The trials 
were initially established as replicated experimental designs with repeated 
measurement. Issues relating to the use of blocked data within a yield modelling 
context are discussed by Broad and Lyneh (2006). 

Aggregating data across repeatedly measured designed experiments, each of 
which is a well-designed experiment, does not guarantee a well-structured data sct 
for the purposes of yield modelling. CoiI1te has no cxperiments established in un-
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thinned stands having site indices below 10.5 m. yet some 21.1 % of its un-thinned 
estate has site indices below this level. Similarly, for thinned stands with site indices 
below 13.5 m, approximately 1.2% of its experimental data falls in this range 
compared with 21.16% for the estate data (see Figure I, Broad and Lynch (2006)). 

These data omissions would be best rectified through an additional sampling 
schemc specifically designed to address the imbalance. The approach taken here was 
to use data substitution to facilitate growth model development in the absence of 
further sampling. Substituted data occurred below site index 15.0 (m) were sourced 
from Booklet 48, Forestry Commission (1981). 

Parameter estimation 
The above equations were fitted to data extracted from the Coillle permanent sample 
plot database. Obtaining data records in a form snitable for model fitting was 
facilitated by a database query program written using Microsoft Access®. The 
program forms a useful tool for validating data from perroanent sample plot records 
and subsequently extracting data for growth modelling purposes. The validation code 
performs both basal area, and sample tree volume checks. The data extraction code 
takes the validated records and prepares aggregate information for growth modelling 
purposes. 

Weighting techniques were used to address some of the data imbalances within 
Coillte's research database (Broad and Lyncb 2006). The data imbalances include 
unrepresentative sampling in some site index classes. The procedure for determining 
weights to be used in estimation procedures relies on knowledge of some attribute 
variable for both the sampled population and the target population. The attribute 
variable chosen in this study was site index. Once site index histograms are available 
for the sampled and target populations, sampled observations can be weighted as 
follows. 

PT " ( ~ ) Ps (14) 

Where Ps denotes the proportion of sampled observations in a specified site index 
class and P T is the portion of target observations in the same site index class. The 
sampled observations are weighted by the quotient ratio in parentheses to ensure a 
weighting consistent with the target population. This weighting scheme is applicable 
only when observations exist in the sampled site index class (they must then exist in 
the target class). If the target class has observations but the sampled class does not 
then it is necessary to aggregate over classes to ensure sampled observations exist 
within the aggregated sample class. 

When determining the weights for a specific equation the histograms for the 
target and sampled popUlations are initially constructed. For the target population the 
histograms always used in weight determination are those indicated as Estate Un­
thinned and Estate Thinned in Figure I of Broad and Lynch (2006). For the sampled 
population the histograms are constructed from the data used in equation fitting and 
consequently vary between equations. The sampled population histograms are 
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constructed after any additions for data omissions have taken place. This process 
may not uniquely define a set of weights, as often more than one possibility exists 
for drawing the sampled population histogram. To illustrate, when fitting growth 
component models the sampled population histograms are constrncted from the 
trajectory data used in model fitting. Different histograms usually arise depending on 
whether we use the plot site index or trajectory site index as the observation when 
constrncting the histogram. Only when all plots have the same number of trajectories 
are the histograms the same. 

Height growth estimation 
Garcia (1983) assumed in estimating the parameters of the height equation (4) that 
its increments were perturbed by a stationary Gaussian process with independent 
increments (see also Seber and Wild 1989). This permits construction of the log 
likelihood function and determination of the height equation parameters through log 
likelihood maximisation. 

Site index curves are typicaUy obtained by varying one parameter from plot to 
plot, although strictly speaking aoy function of the parameters can be chosen to vary 
in this manner (Garcia 1983). Parametcr(s) chosen to represent site are referred to as 
local parameters within the likelihood function, while those that are constant across 
all sites are termed global. Both anamorphic (a local) and polymorphic (b local) 
height equations were fitted to a height data set extracted from Coillte's database 
augmented with FC height trajectory data to cover data omission in lower site index 
classes (Broad and Lynch 2006). The final data comprised 423 trajectories ofwhieh 
160 were from FC data. Weighting changes for the log likelihood were achicved by 
replicating observations. The FC data was afforded a higher weighting over repeated 
fitting attempts to lower predictions for lower site index classes. 

The log likelihood function for the polymorphic model had a value of3887.412. 
This was an improvement over the anamorphic model which was not considered 
further. The use of the polymorphic model means the suggested time scaling in 
system (6) can be implemented. 

In the solution of the height equation the initial height Ho (m) at time to (years) is 
assumed to be zero. The following parameter estimates were obtained using Garcia's 
height estimation program 

a ~ 49.348040 
c ~ 0.624157 
to ~ -0.75 

The to parameter was pinned although various candidate values were considered. 
The height equation can be used to predict top heights for trees in production 

environments. There are non-production areas in Ireland where this equation would 
be conservative. Figure 1 shows a family of site index curves. 
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Figure I: Sitka spruce site index curves (reference age 30 yrs). 

Basal area and mortality growth estimation 
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Consecutive stand measurements of basal area, stocking and top height (state vector 
elemenls) in the absence of thinning fonn the basis of the data set used to fit the 
dynamical system specified in equations (3)_ In a thinned stand, a growth trajectory 
comprises the stand state measurement immediately after thinning (post-thin) along 
with that immediately prior to the subsequent thinning (pre-thin). In un-thinned 
stands a trajectory will arise from each consecutive pair of stand measurements. In 
thinned stands, windthrown trees that occur immediately prior to thinning were 
modelled as parl of the thinning. This allows for limited recoverability of 
windthTOwn material. 

The thinned model has been fitted to trajectories from stands having had 
selection, systematic, or line plus selection thirming treatments. A limited number of 
the trajectories from wider spaced stands were used. In addition, trajectories from un­
thinned stands were incorporated in the thinned data set. This reflects the fact that all 
stands start out as un-thinned stands and that a wide diversity of thinning practice can 
exist. Additional FC data were added to address the issue of data being absent from 
lower site index classes (see Broad and Lynch 2006) Careful scrutiny was given to 
screening plot data, Basal area and mortality increments were examined along with 
a graphical analysis of trajectory data. In cases of obvious abnonnalities~ these data 
were no included. 
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For parameter estimation purposes, Garcia (1984) assumed that the system of 
differential equations (3) is perturbed by a 3-dimensional Wiener-process. The 
resulting system of stochastic differential equations facilitates the construction ofthe 
conditional probability of observing the stand state at time t2 given the state at time 
f l " The assumption of statistical independence between plots enables the construction 
of the log likelihood function that provides a probability model of generating the 
observed data. The log likelihood function may be estimated under either a diagonal 
correlation structure (Method I) or full correlation structure (Method II). Method I 
was used throughout, as previous applications indicate that it is the most suitable for 
estimation purposes. The model parameters were obtained by maximisation of this 
log likelihood function. The full derivation of the log likelihood function is given in 
Garcia (1979) and a modification to allow for zero eigenvalues is stated in Garcia 
(1984). The case of zero eigenvalues is consistent with an over-specified state vector 
for growth modelling. However, such a vector may be useful in that its components 
may be used as arguments within ancillary functions such as the volume or thinning 
equations. 

In response to the data imbalance issues identified in the research data (Broad and 
Lynch 2006) the weighted form of the Method I log likelihood function was 
developed. This was coded using Compaq FORTRAN (Compaq Computer 
Corporation, 2001). In all fitted models, weights were initially determined using 
equation (14). For each fitted model the sampled population histogram was 
constructed using the site indiceg ",soeiated with the trajectory data. Thereafter 
weights were modified to ensure ad hoc criteria were satisfied. These criteria were 
designed to ensure that relativities between thinned and un-thinned stands being 
realistic, projections across the range of site indices remaining reasonable and 
comparisons with FC projections remained satisfactory. 

Table I indicates the structure of some models fitted subsequent to fitting the top 
height equation. For thinned and un-thinned stands the base model with parameters 
all' a12• a l3, a21' c Ll • e 12, e l3' C21 , b l was initially fitted - these are models leT) and4(U) 
in Table I. Subsequently, the fully parameterised versions of system (6) were fitted­
these are models 2(T) and 5(U) in Table I. When examining projections from these 

Table 1: Model fitting results (model number & thinning status (T= thinned, U=un-thinned), 
and parameter list (excluding top height parameter.'.)). 

1V/ode! Log Number of Model description 
likelihood trajectories 

I(T) 7926.91 1460 all' all' a 13, all' Cll' GIl' el 3' C21 , bJ 

2(T) 8017.02 1460 a/{. au au all' a 2l, a l ], ell' ell' C13' ClI, e22, e23, h1' b2 

3(T) 81128.80 /4(,0 all' all' a 13, all' all' a 2l' ell' ell' e 13, ell' e22, elY hi' by Yl' Y2 
4(U) 125611.6 1265 all' a f2,.a f3, all' e Jl , e12, C13, ell' hi 

5(U) 12763.4 1265 all' all' a l3, all' all' a l3 , ell' ell' e l 3' e 21' e 22' C]3' h" b2 

6(U) 12888.8 1265 all' a I2 , a J3, all' all' a l3, CfJ' e 12, e 13, e21' e22' e23, hI' b), Y,) Y2 
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models it was noted that for lower site indices the fitted models tended to ovcr­
estimate when comparisons were made against Fe tables, This led to an investigation 
of fhe site scaling method in system (6), 

The method deployed to investigate site scaling was to use the multiplier function 
approach of Garcia (1989) adapted to the scaling of fhe polymorphic height 
parameter b, rather than relative closure as occurs in Garcia's application. The 
method was based on using a function g(b) to site-scale fhe first two equations in 
system (6) rafher than b, The requirements of such a function are that it be defined 
on some domain where g(b) is less than b, thereafter it has value b, Several candidate 
functions were tried, the most successful of which was 

g(b) ~ {:~+Yl(b-Y2)') if b< y, 
(15) 

otherwise 

Equation (15) is a spline comprising a modi lied cubic followed by a linear 
portion, The parameter Y, denotes the join point at which g(b)~b and g'(y,)~l, the 
additional condition is g(O)~IJ. Nonlinear site scaling is attained for values of b 
below Y,. When fitted, the parameter values obtained allow a zero for g(b) at a small 
positive value of h. These values correspond to site indices that are outside the range 
of the fitted model and should pose no threat to projections. 

Augmenting the fully parameterised system (6) wifh equation (15) led to models 
3(T) and 6(U) in Table 1. All the thinned models in Table 1 have the same 
observation weight set. Similarly, all un-thinned models have a common, but 
different, wcight set. From the increases in the log likelihood function at optimality 
in Table I, it is apparent that the nonlinear site scaling has a beneficial effect for both 
thinned and un-thinned stands, Parameters for fhe fully parameterised models with 
augmented site scaling can be found in Box I & Box 2 of Appendix 2. 

Explanation of the need of nonlinear site scaling could include: genuine nonlinear 
site effects at lower site indices with respect to basal area and stocking development; 
the data interface between Forestry Commission and Irish research data requiring 
nonlinear site scaling to rectify site response imbalances; an ill-fitting height 
equation. Discriminating between these possibilities is difficult but it is suspected 
that non-linear site scaling to rectify site response imbalances is responsible. The 
value for y, corresponds to site index 14.35 (m) for thinned stands and 17.34 (m) for 
un-thinned stands. 

Plots of observed (also used in model fitting) v predicted trajectories are 
illustrated in Figures 2-6. 

Figure 2 also serves to illustrate the range of data used in the fitting of the thinned 
model, and gives an indication of the regions of fhe state space within which model 
projections can be made. The dense cloud of observations less fhan age 45 represents 
the bulk of fhe research dnta. 

Figure 3 illustrates stocking development in thinned stands, with the bulk of the 
data wifh stocking levels of3500 stems ha·' and less. 

Height development is indicated in Figure 4. Both thinned and un-thinned models 
share a common height equation. 
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Figure 2: Sitka spruce (thinned) observed v predicted basal area development. 
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Figure 3: Sitka spruce (thinned) observed v predicted stocking development. 
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Figure 4: Sitka spruce (thinned) observed v predicted top height development. 

90 -

80-

70 -

30~ 

10 ~ ---------
a L'--r"-'-"--~-"-- "' -r----'-"T'.'"-'""-'-',-'---'-,'--"- ------"--"-("'-"'.,,-, ... ,,-'-'-.-------,---,----------. 

o 5 10 15 20 25 3D 35 40 45 50 55 60 --
Figure 5: Sitka spruce (un-thinned) observed v predicted basal area development. 
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Figure 6: Sitka spruce (un-thinned) observed v predicted stocking development. 

From Figures 5 & 6 it is immediately apparent that the observed basal area and 
stocking development from thinned stands is considerably less variable than that 
from un-thinned stands. Mortality in un-thinned stands tends to be clumped both 
spatially, and temporally. 

Volume equation estimation 
The explicit form of equation (9) identified by SAS@ Proc Reg (SAS Institute 1990) 
using stepwise regression was found to be 

Where 
/3

0 
~ 3.30847 (0.1415) 

/3
1 
~ 0.32046 (0.0106) 

/3, ~ -0.53576 (0.2815) 
/3l ~ -21.31789 (0.0001) 
/3, ~ 23.29623 (0.0244) 
/3, ~ 0.77977 (0.1671) 
/3

6 
~ -3.05454 (0.2538) 

/3
7 
~ 0.12462 (0.0086) 

with adjusted R' ~ 0.9806. 
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Multiplying thc above equation by basal area, B, puts it in a suitablc fonn to 
predict volumes for both thinned and un-thinned stands. 

The equation was fitted to a dataset comprising 1676 observations that was 
extracted from Coillte's database. Each observation had measurements of basal area, 
stocking, top height, site index and volume to 7 em small end diameter (SED). Some 
113 observations came from the non-research database. This was used as a 
calibration dataset, as it is known to be free of sampling bias. A further 222 
observations comprised replicated FC data to cover the shortfall of data in lower site 
index classes. The remaining observations came from the research database and a 
small external dataset known as the paper plot series. 

The fitting strategy commenced with weight determination using equation (14). 
The site index available with each observation was used to determine the sampled 
site index distribution. Upon fitting, the relative errors with respect to the calibration 
data were determined. Subsequent refitting involved iterative weight adjustment in 
order to reduce the relative prediction errors with respect to the calibration data. The 
fitting procedure involved a manual search to determine weight sets that were 
associated with low relative prediction errors over the calibration data. The approach 
of treating the weights as extra parameters and using nonlinear programming 
techniques for parameter estimation could not be used. This approach would have 
tended to drive the weights associated with the research data to zero. The research 
data were observed over a wider range than the calibration data, and can be seen to 
extend the range of the calibration data, despite the quality issues. 

Thinning equation estimation 
The parameters in equation (11) were determined using the SAS@ weighted non­
linear least squares procedure, Proe Nlin (SAS Institute, 1990). The data comprised 
532 observations each having basal area and stocking (before and after thinning) 
along with the top height. Observations from plots with systematic first thinning 
were excluded from the regression. Observations were assumed to be statistically 
independent. The model represents the pure selection component of any thilUling (i.e. 
exclusive of any rack-row thinning). The fitting process was direct, as Coillte does 
not have any thinning data independent of those used in model fitting. Consequently, 
there was no basis for undertaking further model tits through weight changcs. 

The weights for the nonlinear regression were initially detennined using equation 
(14). Site indices for the sampled population were obtained by union of the site 
indices from each thinning observation. Data was sourced from the portion of 
Coillte's database representing stands over a range of thinning types: light selection, 
systematic, selection, spaced thinnings. Additional data came from an early thinning 
data set representing non-systematic thinnings. 

The estimated thinning equation parameters and their parenthesised standard 
errors are a ~ 3.140 (0.7122) 

b ~ 0.1800 (0.0414) 
c ~ -0.1838 (0.0253) 
d ~ -0.3267 (0.0463) 
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During simulations, rack-row thinning is dealt with using proportionate reduction 
of basal area and stocking. 

Assortment equation estimation 
Equation (12) was used to develop separate assortment models for thinned and un­
thinned Sitka spruce stands. Parameter estimation was tluough maximum likelihood 
estimation. The likelihood function specified by Grcene (1997, p. 916) was extended 
to the weighted form specified in Appendix I, so as to address imbalances in volume 
data collection (Broad and Lynch 2006). The likelihood was maximised using the 
Newton-Raphson method, which functions through repeated solution of a set of 
linear equations. A useful property of the log likelihood function is that it is globally 
concave, thereby ensuring that a local optimum is a global one, and greatly 
facilitating the estimation of its parameters (Greene 1997). Code development was 
via the SAS® Interactive Matrix Language (SAS Institute 1989). 

Fitting of the log-odds ratio via weighted least squares was undertaken prior to 
maximum likelihood estimation. This offers the advantage of furnishing starting 
estimates for maximum likelihood estimation. Furthennore, the diagnostics available 
within regression packages can be used for model identification purposes. 

The assortment model for thinned stands has some 384 thinned assortment 
observations that were aggregated over systematic- and line-selection thinnings from 
research plots. An additional 70 observations came from the non-research data and 
the remaining 112 observations were Fe data to cover the data omission with respect 
to lower site indices. Final parameters for the fitted model are given in Box 3 of 
Appendix 2. The assortment model for un-thinned stands has 522 assortment 
observations from research plots, 43 observations from non-research plots and 113 
additional observations sourced from FC data (Forestry Commission 1981). 

The strategy adopted in fitting was to calibrate with respect to the non-research 
data as this data set is considered bias free. The research volume data is considered 
to be biased due to measurement problems associated with establishing the volume/ 
basal area regression (Broad and Lynch 2006). Consequently, weights that were 
initially established using equation (14) were modified on an ad hoc basis so as to 
reduce relative prediction errors with respect to the calibration data and the fitting 
repeated. The fitting procedure was terminated when a mean relative prediction error 
of 0.0065 was achieved for the calibration data. The weight modification strategy is 
essentially a search, with manual intervention at each iteration. 

Discussion 
The most serious difficulty encountered during the construction of these models was 
how to address the sampling biases present within the data. Broad and Lynch (2006) 
indicate that only one of these biases is specific to the experimental design data. 
Biases were introduced when the repeated measures data from replicated 
experiments were aggregated and the resulting panel data set considered for yield 
modelling purposes. The biases are a consequence of the different data requirements 
for yield modelling data - notably the randomisation at plot level. 
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The volume bias is a genuine measurement bias. In extreme cases it leads to ill­
conditioning of the volume basal versus area regression line. In these cases the bias 
was detected at the plot level during routine validation. In these instances correction 
was undertaken by creating a wider volume sample diameter range through 
aggregating data across blocks. The full significance of the volume bias was not 
however appreciated until the bias of the stand level volume equation was further 
investigated (Broad and Lynch 2006). The use of independent calibration data, while 
still retaining the biased data because of its beneficial spread, and subsequently using 
weight adjustment during fitting has proved a suitable way to address the bias. Both 
volume and assortment equations were fitted using this approach. 

The building of the growth component models required addressing data omission, 
sampling imbalances due to over and under-sampling in some site index classes. and 
the compromising of statistical independence between blocked plots. Only the first 
two of these were addressed through data addition from an external source and by 
employing weighted versions of Garcia's estimation techniques. The eroding of the 
statistical independence between plots could be halted, for example, by using only 
one plot from each experiment - this is hardly a practical solution however. as it 
would involve not using most of the data. Another alternative solution would be to 
investigate error-component models to deal with the inter-plot cross-correlation. 
Such models arc not well developed and results from using them on even well­
structured data are inconclusive (Gregoire 1987). 

The extant FC models were formed by aggregating stand statistics over rigidly 
managed stands. As such they are largely free of equation error and provided 
invaluable references during model construction. Use was made of them not in tenns 
of the absolute values of their projections but rather in terms of the relativities they 
offer for thinoed and un-thinned stands. In addition, the trend information available 
on differences between stands of varying site index acted as a valuable resource. 

The use of top height at a specified reference age (site index) to assess site 
potential is based on the observation that top height development is little affected by 
changes in stand density through either thinning from below, or initial spacing levels. 
Moreover, top height development is largely independent of the timing of such 
silvieultural operations and consequently its adoption as a mechanism to classify site 
potential is widespread. By way of comparison, the related concept of yield class (m3 

ha~l yr-) employed by Johnston and Bradley (1963) has strong temporal constraints 
in that all thinning operations are assumed as having been perfonned on time. 
Consequently, the advancement or delay of any thinning means that yield class does 
not conform to its usage within the FC tables. 

Although the height equation is perfectly adequate for modelling top height 
development, the interaction of neutral (or line thinning) with top height 
development requires consideration. In neutral thinning, trees are removed in 
proportion to their relative abundance within the stand. Thus, trees that would 
otherwise fonn part of the top height determination are removed and consequently 
top height may be reduced immediately following a neutral thinning. This effect 
could also be accompanied by a subsequent loss of height growth due to the manner 
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in which the stand is opened. 80th effects could be investigated through modelling. 
However, under comparatively low neutral thinning intensities the influence of both 
effects on top height development is likely to be small. Consequcntly, no 
modifications to the top height equation have been considered. 

The classification of site effects using either site index or yield class are not 
totally unrelated. The use of yield class to assess site quality is appealing as it is also 
a measure of volume productivity. Because it is difficult to measure cumulative 
volume production at a given age, yield class is more easily obtained through 
measuring a strongly correlated variable - top height. Therefore, the same primary 
index - top height growth - is used in both systems. The FC models are based on the 
observation by Eichhorn in 1904 (Assmann 1970) that the stand volume to stand 
height relationship is independent of site. This means differential equations could be 
fonnulated for growth projection using top height as the independent variable rather 
than age as was done in this work. This would overcome the static clement of the Fe 
approach. 

The flexibility of dynamic models in representing stand management scenarios 
comes at the price of maintaining sufficient mensurational data to fOlTIl the starting 
point (state vector) for growth projection. The FC alternative of ensuring that 
establishment and subsequent thinning take place to a prescribed pattern places 
considerable restrictions on how stands can be managed. There may also be a large 
opportunity cost associated with the deployment of static yield models as strict 
adherence to them constrains the decision set available to managers. The application 
of a forest planning tool should not restrict the range of silvieultural options available 
to managers, particularly when those decisions can have strong economic 
consequences. In the case of a growth model, projections should not be predicated on 
a particular fonn of stand management. 

Forestry Commission models give great weight to volume maximisation as a 
recommended or even optimal fOlTIl, of stand management. Testifying to this is the 
defining of yield class and marginal thinning intensity, in tcnns of maximum mean 
annual (volume) increment (MMAI). For stands producing a single valuable 
resource, rotation length under volume maximisation is generally longer than that 
under optimal economic management (assuming repeated rotations). Equality holds 
only if the discount rate is zero. The management of repeated rotations under optimal 
economic management is cquivalent to maximising the present value of an annuity 
payable at the end of each rotation (Neher 1990). Consequently, financial returns to 
forest growers can usually be improved by opting for some fonn of optimal 
economic management rather than volume maximisation. Further, dynamic growth 
models are readily utilisable within stand- or forest-level optimisers that seek optimal 
economic management decisions under changing cost and revenue structures. This in 
tum introduces substantial freedom as to how stand- and forest-level management 
activities can be conducted. 
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Appendix 1 

Growth model 
Trajectory data consists of consecutive stand measurement pairs of the form (xl'x2). 

The scaled time interval between observations constituting a measurement pair is 
denoted by &1;. 

The weighted likelihood function has form 

L ~ rl [r~21 I xl] )} (AI) 
j=l 

where 
j(X2J I x 1 j) is the conditional density of x 2J given x I J 

Wj is the weight associated with the jth measurement pair. 

Taking logarithms and substituting from Appendix expression (A2) (Garcia 1984) 
and reworking Garcia 'S Method I estimation technique eventually leads to the 
weighted log-likelihood function 

1[" ( P) "p 1 lnL~-2 ~Wi pln2n+p+~lnir,; +~~wllnR,(I'!T)(A2) 

" n " 

+ ~WllnabS~PIICI)+1~WilnX~I-1'~Wllnx2J 
where 

'2 ~Wil~/Ri~TJ 
a" 

(A3) 

All othcr notation is as specified in Garcia's (1984) paper. Setting the weights to 
unity recovers Garcia 'S Method I likelihood. 
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Assortment model 
A multinomial Logit model was used as the basis for modelling assortments. The 
standard model has been extended to allow for weighting of observations and to 
permit a different number of predictors to be associated with each category. 

The weighted likelihood function has form 

where 

.J 

~d ~I 
'J 

]-

W.> 0 , 

j ~ I, ... ,J 

Here d
li 

are category weights and Wi are observation weights. 
Abbreviating the probabilities P;k ~ Pr [Y; ~ k] allows the gradient of the log 

likelihood function to be expressed as 

a InL ~ ~n W (d - P )x 
ii
'... i~ Ik Ik ik 
ak 1= 

Similarly, the Hessian of the log likelihood has form 

alnL _ _ ~n wP (I-P 'L.. x' 
a' a A' - I Ik \ lk /Alk Ik 

ak 3 k i= 

and 
a lnL n , 

a' a" ~ - ~W;P,kPaX;kXa 
ak 8 z f:f 

Parameter estimation is via Newton's method. 
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Appendix 2 

Sitka spruce / Systematic and selection thinning growth model 

[ 

1.0 -129.8534 - 6.4478 

p~ -6.8276E-4 1.0 7.0968E-3 

0.0 0.0 1.0 

A~diag(-1.393239, - 0427852, -1.0) 

r ].0973 142.4860 6.0639 1 
P-j~l7.4918E -4 1.0973 - 2.9566E-3 

0.0 0.0 1.0 J 

[ 0.8291 1.0813E-2 0.2445 ] 
C- -3.0276E-3 7.8987E - 2 -4.0730E - 3 

0.0 0.0 0.624]57 

[ 1.2055 -0.1650 -0.4733] 
C-'~ 4.6208E-2 12.6539 6.4474E-2 

0.0 0.0 1.602160 

[1020838] 
a- ].4609 

] 13990 

to-- 0.75 

y, ~ -3793.0663 y, - 0.020]9244 

Box I. Sitka spruce (thinned) growth component coefficients. 
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Sitka spruce I un-thinned growth model 

[ 

1.0 127.5287 -16.4235 

p~ 6.1473E-4 1.0 -3.2033E-2 

0.0 00 10 

A~diag(-0.724367, -0.285728, -1.0) 

[ 1.0851 
p-l~ -6.67021: _ 4 

00 

[ 0.8226 
C~ - 1.2591F - 2 

0.0 

1.2149 

C-l~ -8.1621F-2 

0.0 

[248.4541 

a~l 0.7077 
11.3990 

y, ~ -2344.7663 

-138.3768 13.3880 1 
10851 2.3803£ -2 

0.0 1.0 J 

-7.0468£ -3 
0.4482] 

-0.1874 0.1725 

00 0.624157 

- 4.56801i - 2 - 0.8598] 
1.5325 - 5.3327 

00 1602160 

Y 2 ~ 0.02390764 

Box 2: Sitka spruce (un-thinned) growth component coefficients. 
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Sitka jpruce / thinned assortment equation 

Category I (>= 20 em SED); parameters ii, 

INTERCEPT 
II(D,/l00) 
Do * D,*HIJOOOO 
D, * Dol H 
S 
D)-Do 
(D, _D,)A2 
(D, -Do)/(H/JO) 
1I( (D, - Do)*H) 
H/(lOO*(D) - DO)A2) 
(Bo - B)) 
(N,-NdllOOO 

10.3553 
-2.4317 
-0.3571 
0.0049 
0.0929 
-4.5091 
0.4267 
4.6278 
-7.1732 
0.1023 
0.3142 
-8.1327 

Category 2 (114, 20) em SED); parameters ii, 

INT£RCEPT 
l/(Do 1100) 

D, * Dol laO 
H 1,,1 Do 
D, * Do *H 110000 
1.0/ ((D,IIOO)*(HIlO)) 
S 
J)j ~D(J 

(D)-D,) A2 
(D1 - Do) IIH/JO) 
BO-B) 
(N,-N)) I 1000 

Box 3: Thmned SItka spruce assortment equatIOn. 
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5.1717 
-0.661;6 
-0.0720 
-0.2968 
-0.0945 
-0.2310 
0.0520 

-0.5238 
0.1102 
-0.3643 
0.1351 

-2.0790 



Sitka spruce I un-thinned assortment equation 

Category 1 (>= 20 em SED); parameters ", 

INTERCEPT 
II(DoIlOO) 
DolH 
H /,1 Do 
I I «Do I 100)*(HIl0)) 
s 
JO* Dol No 
Do * Do*H I No 
Bo 

3.2721 
0.6276 
2.9686 

-0.8298 
-1.9552 
-0.011 L 
-1.1417 
0.0128 
-0.0052 

Category 2 ([14, 20) em SED); parameters ", 

INTERCEPT 
Do 
II( Dol 100) 
H /,1 Do 
Do * Do*H 110000 
11 «Do I JOO)*(HIlO)) 
s 
10* Dol No 
100* Eo I No 

-27.6178 
1.9530 
2.2596 

-1.3761 
1.1733 

-0.9512 
0.0090 

·0.1599 
-4.6630 

Box 4: Un-thinned Sitka sprnce assortment equation. 
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