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Validating generalised diameter-height models for 
several species and heterogeneous crop structures

M.J. Hawkinsa*, K. Blacka,b and J. Connollyc

Abstract
An examination of the suitability of generalised height-diameter models for growth modelling 
and augmenting inventory measurements was undertaken. A large database of repeated 
measurements taken from crop structure experiments since 1963 to the present in Ireland was 
used. We used a distance independent individual tree height-diameter model to investigate 
whether inclusion of competition variables can be used to predict variations in height across 
a wide range of species and silvicultural management regimes. To this end, we stratified 
the heterogeneous dataset post-hoc into a variety of constituent species, management and 
silvicultural strata. In addition, we attempted to control for site-specific effects and serial 
correlation by using a mixed-effects framework in an effort to identify site specific height-
diameter variables not explained by the model. The generalised model typically performed 
well for each species and silvicultural treatment. The most noticeable impact of treatment 
was observed in plots of Sitka spruce (Picea sitchensis (Bong.) Carr.) with differing spacing. 
The magnitude of inter-plot variability as modelled by a random effect related to the height 
asymptote varied between species, possibly as a result of inter-species differences in tolerance 
to variability in environmental growing conditions. Following validation against external data, 
we show that these generalised models could be used when, in the case of growth modelling 
for example, it is sometimes necessary to derive individual tree heights from individual tree 
diameters, perhaps in standard inventory plots where tree height is not measured on every 
instance that DBH is measured. 

Keywords: Tree height-diameter modelling, individual-tree model, tree competition.

Introduction
The goal of this study was to find individual-tree, age- and location-independent, 
species-specific prediction equations that can be used for plots at any stage in their 
lifecycle under a wide variety of management regimes. Forest inventory datasets 
usually contain many more measurements of diameter at breast height (DBH, cm) than 
tree height (H, m). This practice often comes about because it is the DBH distribution 
which is more variable than the H distribution, and because it may be assumed that 
the DBH-H relationship can be modelled for the unmeasured heights to be predicted 
with this model. A common forest inventory approach to DBH-H modelling is to use 
Chapman-Richard models based on species and plot-specific predictions (Wykoff et 
al. 1982). However, Chapman-Richards and similar functions are problematic when 
used as generalised models because the solved function approaches the asymptote too 
rapidly, particularly when there is a weak relationship between DBH and H in larger 
trees and across different sites (Temesgen and von Gadow 2004). 
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The height-diameter relationship can vary between individual trees in a dataset 
due to competition, structural allocation variations across different silviculture 
management types (Cameron and Watson 1999), or variations in site conditions, such 
as degrees of exposure (Brüchert and Gardiner 2006). Distance independent DBH-H 
models fitted on the scale of the tree – incorporating information on tree size, inter-tree 
competition and site differences – have been successfully used to describe variations 
in height across sites varying in respect of environmental and competitive conditions 
(Monserud and Sterba 1996, Temesgen and von Gadow 2004, Uzoh and Oliver 2006). 

In Ireland, there is an increasing need to develop individual tree growth models 
and height-diameter functions to facilitate the projection of volume or carbon stock 
changes using the National Forestry Inventory (NFI 2007). Projections and annual 
interpolation of tree diameter and height between repeated inventory cycles are 
particularly relevant for reporting annual carbon stock changes to the United Nations 
Framework Convention on Climate Change. In this context, height-diameter functions 
are required to derive height estimates from individual tree diameter increment 
models, such as those described by Monserud and Sterba (1996).

Temesgen and von Gadow (2004) derived nonlinear regression models that estimate 
height of individual trees in a stand or plot as a function of DBH, using covariates of 
competition proxies that are calculated without using the spatial coordinates of trees in 
the stand or plot (i.e. models that are both age and distance independent). They found 
that using these competition covariates produced DBH-H models with improved 
accuracy of prediction, compatibility among the various estimates in a growth and 
yield model, and maintained projections within reasonable biological limits.

In this study, we used a heterogeneous database pertaining to experimental 
plots to investigate if the inclusion of these described competition variables can be 
incorporated to accurately predict, with minimal bias, variations in height across a 
wide range of species, sites and silvicultural management regimes. For our DBH-H 
model we followed the approach developed by Temesgen and von Gadow (2004) 
who described competition using plot density (DENS, trees ha-1), plot basal area 
(BA, m2 ha-1), and basal area in larger trees (BAL, m2 ha-1). (We calculated BAL as 
the basal area of all trees in the plot whose DBH were greater than the target tree. 
BAL calculation was made for each measurement occasion, as it was used for DENS 
and BA.) Unlike Temesgen and von Gadow, we incorporated random site effects 
as well. The performance of these models was assessed using a randomly sampled, 
independent and external datasets. The performance of these models in mixed species 
stands, such as the Sitka spruce1 and southern provenances of lodgepole pine (Pinus 
contorta Dougl.) mixture on planted blanket peats in Ireland were assessed. 

Methods

Datasets for model development and validation
We describe here the relevant aspects of the data in our study. Interested readers will 
find additional detail pertaining to the datasets in Broad and Lynch (2006a). The data in 

1 The full botanical names and authorities for all species are listed in Table 1.
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our study were obtained from Coillte Teoranta’s permanent sample plot record system. 
The dataset contains records from many spacing, respacing and thinning trials (as well 
as unreplicated sample plots) established during the period 1963 to 2001. The trials 
were initially established in the 1960s, 1970s and 1980s as replicated experimental 
designs with consecutive measurements typically made up to 2001. It was common 
practice to record diameter measurements on an annual basis in the early years of the 
experiment, with full plot repeated measurements occurring at 3-5 year thinning cycle 
intervals; thereafter DBH was typically measured for all trees on all measurement 
occasions. In each permanent sample plot, from 10 to 20 tree heights (depending on 
plot size) were measured. The experiments were laid out in plots (varying from 0.01 
to 0.21 ha) and plot stocking was known at the time of measurement. The species are 
listed in Table 1.

The permanent sample plot (PSP) trials were set out in ca. 2,900 permanent sample 
plots with various species and silvicultural treatments, including thinning, spacing 
and pruning. The dataset used to develop the models described here (the calibration 
dataset) contained 1170 permanent sample plots. Data from plots were excluded where 
simultaneous measurements of DBH and H were missing. In addition, all pruning 
experimental data were excluded from the calibration dataset.

Plots used for thinning and spacing experiments were included in the dataset to 
which the models were fitted (Tables 2 and 3). The thinning treatments contained in the 
dataset included (Table 3): no thinning (NTH), no thinning with removal of dead trees 
(NLT), line thinning -1st cycle only, subsequently selective thinning (LS); selective 
thinning (SEL); systematic thinning (SYS) and thinning of dominant trees (DOM). 
Thinning intensity was generally constant across all treatments, using a moderate 
intensity prior to the advent of the marginal thinning intensity concept introduced 

Table 1: Details of species sampled in the PSP database and the grouping of species or 
provenances in modelling exercise. Note: both larch species were grouped together.

Common name Binomial name Provenance (if known) 
Common alder Alnus glutinosa L. 
Common ash Fraxinus excelsior L.
Douglas fir Pseudotsuga menziesii (Mirb.) Franco Washington and coastal 

provenances 

Japanese larch Larix kaempferi Fortune ex Gord. 
Larix decidua Mill. 

Lodgepole pine Pinus contorta Loud. South and north coastal 
provenances 

Monterey pine Pinus radiata D. Don 
Norway spruce Picea abies Karst. 
Pedunculate oak Quercus robur L.
Scots pine Pinus sylvestris L. Scottish 

Sitka spruce Picea sitchensis (Bong.) Carr. QCI 
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by Bradley et al. (1966) and further developed by Hamilton and Christie (1971). 
Thinning intensity was also investigated in a small set of experiments (Gallagher 
1966, 1969, 1972, Gallagher et al. 1987) wherein heavy, light and moderate thinning 
were applied, based on the Forestry Commission A-D thinning grades. These thinning 
grades determined by height or age class, or a relative proportion of basal area at the 
time of thinning (Gallagher 1969, 1972). The data were not categorised by thinning 
intensity because these were not documented in the PSP database.

External independent data were used to validate the fitted models. These data 
came from a cross-sectional sample in 2003 of plots within Coillte production stands 
(Broad and Lynch 2006a). Such cross-sectional comparisons are particularly useful 
for assessing inter-plot bias due to a more randomized sampling approach in the 
validation dataset. These sample plots comprised thinned and un-thinned stands, 
which had been initially planted at a spacing of 2,500 stems ha-1 for coniferous species. 
External validation data were not available for all species. 

Site-to-site variations in the relationship between height and diameter are often 
well described by inclusion of dependent variables such as aspect, slope or exposure 
(Uzoh and Oliver 2006). These data are not always captured in sample plot databases, 
so they cannot be included as dependent variables in the model. These variables were 
not included in our dataset, so we accounted for plot-to-plot variability with a site 
variability parameter (Equation 1) in a mixed-effects model (McCulloch et al. 2008).

Table 1 presents the species represented in the PSP database. Table 2 presents 
summary statistics for the height and diameter at breast height and illustrate the two 
main features of the repeated sampling structure of the dataset. These tables show 
the number of repeated measurements on individual trees, which varied from 1 to 18, 
classified by silvicultural treatment and species. They also showed the degree to which 
repeated H measurements on sample trees occurred less frequently than their repeated 
DBH measurement counterparts. Table 3 shows the heterogeneity of experimental 
treatments present in the dataset, in terms of different thinning intensities and planting 
spacing distances, for Sitka spruce and lodgepole pine. All the other species were 
insufficiently represented in the dataset to allow a comparison of different silvicultural 
regimes. 
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Table 3: The number of trees of Sitka spruce and lodgepole pine classified by plot treatment. 
DOM = dominant trees removed in early thinning, LS = line selection first thinning, Nxx = 
no thinning at planting spacing of xx metres, NLT = only dead trees are removed, NTH = no 
thinning, Sxx = selective thinning at planting spacing of xx metres, SEL = selective thinning, 
SYS = systematic thinning. Explanatory Note: total number of observations exceeds the number 
of trees (cf. Table 2) because of repeated measurements.

Treatment Sitka spruce Lodgepole pine
DOM 143 0
LS 520 718
N1.22 350 278
N1.83 112 347
N2.44 159 573
N3.05 607 466
N3.67 275 291
NLT 283 41
NTH 2036 1080
S1.22 327 416
S1.83 278 353
S2.44 278 379
S3.05 150 282
SEL 4219 1661
SYS 5976 1580

Nonlinear mixed-effects model
As noted earlier, series of consecutive height measurements for individual trees 
were much shorter on average (e.g. Series mean ≈ 1) than series of consecutive 
DBH measurements (Table 2). Such short series made it unfeasible to parameterise 
the DBH-H models at the level of the individual tree, e.g. to estimate tree-specific 
coefficients for each tree in the dataset. The parameters of the model equation that 
were initially fitted to each species in turn is given in Equation 1. This equation 
corresponds in most respects to Model 7 from Temesgen and von Gadow (2004), but 
differs slightly on account of the inclusion of a plot-level random effect related to the 
asymptote.

[1]

In Equation 1, plots, trees and measurement occasions are indexed by i, j, and k, 
respectively. E(.) is the expectation operator. Equation 1 shows the modelled mean 
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of a conditional Gaussian distribution with mean zero and variance σ2
e (Table 4). 

Symbolically, the terms in the model equation are interpreted as “coefficient.variable”, 
i.e. aba is the coefficient of the variable BA, and so on. The plot level random effect ui 
~ Gaussian (0, σ2

u) accounts for correlations between consecutive measurements on 
the same plot (McCulloch et al. 2008) as well as quantifying inter-plot variability. The 
model in Equation 1 was selected through a process of model fitting which involved 
evaluating different model equations for suitability. For example, we tried introducing 
further parameters to describe correlation and inter-subject variability, i.e. inter-tree 
variance parameters, but these models were not an improvement on Equation 1. 

The b Parameter is a priori negatively valued (Table 4) so the model equation 
realistically represents the shape of the empirical DBH-H relationship. The estimated 
asymptote for trees in the ith plot as DBH tends to infinity, all covariates having been 
set to zero, is given by a + ui. Models were fitted to each species dataset separately 
using the algorithms in the SAS NLMIXED procedure (SAS Institute Inc. 2009). 
The lattice library in R v2.10.1 was used to produce the graphical summaries (Sarkar 
2008).

Results
The parameter values of the best-fitting models are given in Table 4. The empty cells 
in Table 4 refer to those parameters that were either not statistically significant (at 
significance level α = 0.05), or that the model did not converge with that parameter 
included, or that the fitted parameters were inconsistent with the results obtained by 
Temesgen and von Gadow (2004). (Their results were used as an external benchmark 
check, which was particularly useful in those cases where convergence was difficult 
to achieve or the parameter estimates were dubious.) We set the significance level for 
model selection at α = 0.05, but parameters were typically significant below this level. 
For common ash, the inter-plot variance parameter was not statistically significant, but 
was retained in the final model because, while its inclusion did not affect the estimated 
values of the coefficients of the other covariates, we considered it desirable to include 
inter-plot variability in the estimates of the standard errors of the coefficients.

External validation
External validation data were available for a subset of the species grown in pure plots: 
Douglas fir, lodgepole pine, Norway spruce, Scots pine, and Sitka spruce. Comparisons 
of the external validation data and modelled data are shown in Table 5. We also show 
the empirical distribution of the external validation residuals in Figure 1. Plot size 
effects were looked for in the external validation residuals but none were found. 
Residuals plotted against DBH and BAL for all species tested similarly and showed 
no correlation (data not shown). However, it was evident (Figure 2) that height was 
overestimated in Sitka spruce stands with a low stocking density (ca. <200 stems ha-1 
residuals were greater than 5 m). Residuals derived from validation plots with stands 
of a stocking density below 200 stem ha-1 were more likely to have been artefacts of 
differences in the respective ranges of the DENS variable in the fitting and validation 
data. In any event, such densities might be considered very atypical in practice.
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Species Parameter

a aba adens abal b c cbal
a σ2

u σ2
e

Common alder 10.9 0.18 -0.001 -0.13 0.8 2.300 1.01

Common ash 13.3 0.14 -0.18 0.016 0.99

Douglas fir 11.3 0.34 -0.001 -0.07 2.900 1.94

Japanese larch 19.6 0.17 -0.003 -0.07 3.94

Lodgepole pine 11.1 0.11 -0.001 -0.11 3.900 1.04

Monterey pine 19.7 -0.098 -0.06 1.90

Norway spruce 34.5 0.33 -0.003 -0.07 0.6 31.040 1.18

Pedunculate oak 6.3 0.29 0.050 -0.17 0.96

Scots pine 26.2 -0.003 -0.16 0.7 6.700 1.20

Sitka spruce 12.7 0.26 -0.002 -0.003 -0.07 12.100 2.20

Table 4: Estimated model parameters significant at least at α = 0.05. Parameter symbols are 
explained in Equation 1 and related text.

a This parameter was not significant; however, it was included in the parameter list here because it featured in Equation 1.

Mixed plots
RMSE and bias for intimate mixtures of lodgepole pine and Sitka spruce are presented 
in Table 5. There were few mixture plots present in the dataset and no consecutive 
height measurements were present in the data for the mixture plots. There were a 
total of 185 height measurements from nine mixed lodgepole pine and Sitka spruce 
plots. As such, the results pertaining to mixtures in Table 5 are given in the interest of 
completeness, rather than as a conclusive or extensive analysis of DBH-H relationships 
in mixed-species plots.

Management and thinning effects
The dataset consisted of experimental data from many different types of silvicultural 
and thinning trials (Table 3). Smoothed density estimates of the empirical residual 
distributions for these trials are shown in Figures 3a and 3b. In general, all 
experimental types were modelled in an unbiased way, and the residual distributions 
are symmetrical around zero.

Figures 3a and 3b and Table 5 shows that the lodgepole pine model was more 
accurate than the Sitka spruce model. The differences in species models were most 
pronounced in plots where both spacing and selective thinning treatments had been 
applied and where the spacing levels varied across plots (cf. the Sxx panels in Figure 
3b). There is some evidence that the models for each species performed best at 
intermediate spacing levels, both in thinned and unthinned plots (Figure 3b). In both 
lodgepole pine and Sitka spruce, model accuracy was greater in plots where spacing 
was the only treatment applied, than where spacing and selective treatments were 
applied (compare rows in Figure 3b).
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Discussion
Many previously published DBH-H models have not been validated against an 
independent (external) dataset to investigate the presence of sampling bias in the 
model parameterisation dataset, as done here. This issue was also highlighted by 
Broad and Lynch (2006b). Prediction models tend to perform better on data from 
which they were constructed than on new data. Results are often accepted without 
sufficient regard to the importance of external validation. The limitations of internal 
validation are acknolwedged and this work incorporates an external validation to 
demonstrate the potential generalisability of a diagnostic prediction model to future 
settings or independently sampled data.

Temesgen and von Gadow (2004) defined generalised DBH-H models as 
equations that predict tree heights using information on both individual tree DBH and 
plot or stand level information, such as stand basal area or plot density. Individual-
tree distance-independent DBH-H models that do not incorporate information on the 
plot make the implicit assumption that competition (as measured on the scale of the 
plot/stand by DENS, and BA, and on the scale of the tree by BAL) does not affect 
the DBH-H relationship over the lifetime of a tree that is subject to management 
influences, e.g. spacing and thinning. Plot-specific DBH-H models, that do not 
condition on plot/stand covariates, are often fitted by a multi-step approach wherein 

Figure 1: Smoothed empirical frequency distributions of external validation residuals (Actual 
height - Predicted height).
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separate DBH-H relationships for each plot are fitted. Competition effects are thus at 
best implicitly described by the variation in each plot-specific fitted parameter. 

Generalised models, as defined above, attempt to deal with the broadest response 
range, so perform better on plots that are near the centre of the sample space dataset 
rather than plots subject to relatively atypical management conditions. (In fact, this is 
similar in principle to a standard result in regression modelling, whereby accuracy is 
maximised at the mean).

Generalised models tend to borrow strength across plots/stands, meaning that 
issues related to data sparseness on individual plots are mitigated. A plot-specific 
approach can encounter problems if data for a given plot are so sparse as to not 
support model fitting. When this occurs in practice, parameters are sometimes pinned 
at their generalised values, i.e. they are fixed at their value estimated using data from 
all plots (this approach was used in Ireland’s NFI, for example), and the remainder of 
the parameters are estimated with whatever plot-specific data exist. If there are many 
such plots in the dataset, this process of estimating parameters plot-by-plot can be 
tedious; hence the appeal of our approach, which conflates the better aspects of the 
generalised and plot-specific approaches.

Figure 2: External validation residuals from the lodgepole pine and Sitka spruce models 
plotted against a subset of covariates. Note, not all covariates shown here were included in the 
final models (cf. also Table 4). Scale varies among panels. DENS is plot density (trees ha-1), BA 
is plot basal area (BA, m2 ha-1), BAL is basal area in larger trees (BAL, m2 ha-1).
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We modelled inter-plot variability through a plot-specific random effect related to 
the asymptote using mixed-model technology (McCulloch et al. 2008). This model 
feature forms a logical link between generalized and plot-specific models because 
plot-specific parameters are estimated for plots where sufficient data exist (the ui terms 
in Equation 1.). The resulting model equation, if there is an estimated plot-specific 
effect, predicts for a specific plot. To predict for plots not included in the dataset, or 
for those plots with insufficient data for plot-specific effect estimation, ui was set at 
0. The mixed model approach used also imposes a common correlation between each 
measurement on a given plot, and observations on different plots are independent. 
More complex correlation models (the correlation model, nested within the overall 
model, cf Equation 1, dealing with how measurements on the same plot or tree are 
related) did not improve the overall model and the selected final models, therefore 
fulfil the goal of finding individual-tree, age- and location-independent, prediction 
equations that can be used for each species for plots at any stage in their lifecycle 
under a wide variety of management regimes was not fulfilled.

Figure 3: Classifying fitted-data residuals by experiment type and treatments applied to plots. 
Only lodgepole pine (broken line) and Sitka spruce (continuous line) are shown because they 
were the most abundant species in the dataset. 
Data depicted in (a) relates to thinning experiments treatments, where “NTH” denotes 
unthinned plots, “SEL” denotes selective thinning treatments, “SYS” denotes systematic 
thinning, “DOM” denotes dominant tree removal, “LS” denotes line and selective thinning 
plots, and “NLT” denotes removal of dead trees only. See also Table 3.
Data shown in (b) relates to spacing and thinning experiments. The top row shows selectively 
thinned plots at an initial spacing of (from left to right) 1.22, 1.83, 2.44 and 3.05 m. The bottom 
row shows non-thinning treatments at an initial spacing of (from left to right) 1.22, 1.83, 2.44 
and 3.05 m.

(a) (b)
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The mixed-effects model framework enables the user to estimate parameters for 
potentially complex datasets with hierarchical samples and groups. For example, 
the modelling task might have been accomplished with species-specific random 
effects models that also incorporated plot-specific effects. Such a nonlinear model 
with multiple groups and levels of hierarchy is very complex, as is model-fitting and 
parameter selection, particularly for very large datasets, such as those analysed in this 
study. Within our framework, the potential for other parameters to vary between plots, 
i.e. the b and c parameters in Equation 1, were tested but they did not improve the final 
model. This suggests that there is overlap between the competition proxy variables, 
BAL etc., and plot-specific effects that essentially “mop up” residual variability. That 
random b and c parameters were not statistically significant, given the prior presence 
of competition variables, is an indication that the competition covariates account for 
residual inter-plot variability. By extension, the significance of the random asymptote 
term, indicates a potential shortcoming of those same covariates.

Species Fitted data Validation data 
(where applicable)

Bias/RMSEa Bias/RMSEa

Biasa RMSE (%) Biasa RMSE (%)

Common alder -0.00 0.99 -0.06

Common ash  0.00 1.10 0.18

Japanese larch  0.01 1.99 0.25

Lodgepole pine  0.01 0.99 0.90 -0.00 2.30 0.20

Lodgepole pine (in 
mixture with Sitka spruce)

 0.00 1.87 0.13

Scots pine 0.00 1.11 0.00 -0.04 1.20 0.30

Norway spruce  0.00 1.10 0.30 -0.48 2.50 1.92

Douglas fir  0.10 1.40 3.60 0.01 3.10 0.16

Monterey pine  0.03 1.60 1.90

Sitka spruce (pure stand)  0.04 1.50 2.70 1.80 3.80 47.00

Sitka spruce (in mixture 
with lodgepole pine)

-0.01 1.74 0.34

Pedunculate oak -0.00 1.20 0.10
 a  Rounded to two decimal places.

where Hi denotes height (m) predicted by the model, p represents the model dimension and 
n = the total number of times in a given species dataset, that DBH and H were measured on 
the same tree on the same measurement occasion. Validation data were not available for all 
species.

Table 5: Measures of model performance based on fit to the data and external validation data.
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Table 5 shows that RMSE is typically higher for the validation data than the 
calibration data. The Bias/RMSE ratio increases dramatically for Sitka spruce. 
This is a due to a combination of reasons, primary among them being the different 
distribution of plot density values in the calibration and validation datasets. In the 
validation dataset, the median plot density of Sitka spruce plots is 900 trees ha-1, 
compared with 1,600 trees ha-1 in the calibration dataset. The Bias/RMSE ratio for 
the upper 50% values in the validation data was only 6%. Therefore, the increase 
in the ratio was largely due to an inflation in the bias value caused by a mismatch 
between the calibration and validation data, given that the RMSE for the Sitka spruce 
validation dataset is of the same order of magnitude as it is for the other species. 
The susceptibility of the model to this kind of mismatch is illustrated in Figure 2, 
where external validation residual associations with the covariates are shown for Sitka 
spruce and lodgepole pine. This phenomenon also partly derives from the inclusion 
of an asymptote in the model, because mature stands usually contain tall trees at low 
densities, and it is in that region of the sample space that the fitted curve begins to 
level off towards the asymptote. This feature is observable in the fitted data also, but 
at a smaller magnitude than when the model is used “out of sample”. We believe that 
a constant asymptote is necessary in the model so that out-of-sample predictions are 
robust, in the sense that out-of-sample predictions can potentially become negative 
without a constant asymptote term.

In the case of larch, the random asymptote model (Equation 1) did not converge. To 
achieve convergence we could have either omitted the asymptote constant (parameter 
a) from the model, or omitted the inter-plot variance component (parameter σ2

u). If 
the model equation does not have a constant parameter (i.e. parameter a), implausible 
model estimates of values less than zero can arise. The inter-plot variance component 
in the final larch model was omitted. For completeness, we note that the estimated 
inter-plot variance parameter for the model fitted without the constant term (parameter 
a) was 41.87 (s.e. 6.2). This is large compared to the majority of the estimates of inter-
plot variability presented in Table 4. However, the estimated values of this parameter 
are not directly comparable across different species because they are conditional on 
different subsets of covariates being included in the models. 

The observed level of the inter-plot variation (as measured by the parameter σ2
u in 

Table 4) in Norway spruce may be related to species specific responses to exposure 
(Horgan et al. 2004, Ray et al. 2009) and other factors. Norway spruce is generally 
considered as very intolerant to exposure (Horgan et al. 2004), typically showing a 
marked reduction in the slenderness ratio, i.e. the ratio of DBH to H (Wang et al. 
1998, Brüchert and Gardiner 2006). By contrast, lodgepole pine is considered to be 
relatively more tolerant to exposure (Horgan et al. 2004, Ray et al. 2009). In apparent 
concordance with that relationship, our model estimated relatively lower inter-plot 
variability for lodgepole pine than for Norway spruce (Table 4). 

The mechanism for species-specific variations in the interplot-variability in the 
relevant DBH-H models is not obvious in our models. Our models do not incorporate 
quantifiable variables, such as aspect or level of exposure that may reinforce our 
posited links between species and environment, such as those mentioned in the 
previous paragraph. However, if additional information describing varying plot and 
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site conditions became available, variables such as site slope, elevation, exposure 
or aspect could easily be incorporated in the model (e.g. Uzoh and Oliver 2006, 
Monserud and Sterba 1996) or could be compared with the individual plot-effect 
estimates in the manner of a residual analysis since, after all, the estimated plot effects 
are simply residuals related to individual plots.

Conclusions and practical implications
We fitted a generalised DBH – H model incorporating covariates pertaining to tree 
size and competition to a dataset that encompassed a wide range of silvicultural 
management conditions and tree species. We post-stratified the dataset into its 
constituent species and experiment-type groupings, examined the model fit using an 
external validation dataset, and found that the generalised model performed well in 
the vast majority of cases. The incorporation of variables that describe site-specific 
conditions and how such models might relate to the relatively more empirical mixed 
model approach implemented here may be investigated in the future.

The practical implications of the study were:
•  The generalised DBH-H models presented here can be used in forest inventories 

to derive height, if not available, based on DBH measurements. The derived 
height measurements can assist in more accurate determination of single tree 
volumes, top height or taper equations.

•  The advantage of using single tree models, which are calibrated across a 
range of spacing and thinning treatments, is that one model can be used. In 
contrast, traditional stand-based models, which are parameterised for different 
silvicultural treatments (e.g. GROWFOR), use separate models for thinning 
and non-thinning scenarios. 

•  The Irish national GHG reporting system, CARBWARE, uses the described 
model to derive height increment based on DBH growth models. The same 
modeling approach could be used for timber forecasting at the single tree level. 
Timber projections at the single tree level provide a more accurate estimation 
of timber assortment distribution, when compared to stand-based models.
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