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Abstract
Synthetic Aperture Radar (SAR) satellite data can be used to monitor spatial and temporal 
changes in forest biomass and timber volume. Previous research suggest the SAR L-band 
backscatter signals saturate at a relatively low stand biomass threshold, making the application 
limited to thicket stage crops. In this study, new biomass and L-band backscatter regression 
models were developed using procedures to reduce interference due to radar incidence angle 
and surface moisture and by applying cross-image calibration using both forest and non-forest 
plot data to increase the biomass saturation point for stand biomass and volume. Many of the 
widely published model formulations were found not to provide a suitable model fit because 
of non-normal distribution and evidence of heteroskedasticity of model residuals. The model 
re-developed in this study performed better than published models, based on lower Akaike 
Information Criteria values and no heteroskedasticity of model residuals. The backscatter 
saturation for the re-developed model occurred at biomass values of c. 100 Mg ha-1, so accurate 
determination of biomass using this approach may be limited to immature forest stands. 
However, the L-band backscatter-biomass model may be suitable to detect changes in forest 
biomass or volume due to disturbance events.

Keywords: Biomass regression models, Synthetic Aperture Radar, L-band backscatter.

Introduction
Aboveground biomass represents an important component of forest carbon (C) and 
depletion of this C pool due to anthropogenic disturbances such as deforestation or 
forest degradation can lead to large greenhouse gas emissions. However, assessments 
of C loss due to deforestation and harvesting are subject to large uncertainties. Use 
of active remote sensing techniques, such as Synthetic Aperture Radar (SAR), have 
shown potential for monitoring spatial and temporal changes in forest biomass. 
Numerous studies have reported on the direct relationship between SAR backscatter 
signals (i.e. at the bands of longer wavelengths: P (30-100 cm) and L (15-30 cm)) and 
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forest biomass (Ryan et al. 2012, Huang et al. 2015). In particular, full polarimetric 
SAR provides combinations of different transmitted and received polarisations, such as 
horizontally transmitted and vertically received backscatter (HV) signals, which have 
been shown to detect changes in forest biomass up to a saturation level of 100 to 200 
Mg C ha-1, depending on the SAR wavelength (C, L, P or S bands). L-band data from 
the PolSAR satellite have been used to monitor forest disturbance and assess biomass 
in tropical, boreal and sub-tropical regions (Ryan et al. 2012, Robinson et al. 2013).

A number of factors can affect the relationship between forest biomass and L-band 
backscatter signals, such as radar incidence angle, changes in surface dielectric 
properties due to moisture and differences in surface roughness. Therefore, numerous 
cross-image normalisation and adjustment procedures may be required to provide 
reliable estimates of forest biomass (Huang et al. 2015). Another confounding factor 
is that L-band signal saturation for forest biomass occurs at 50 to 100 Mg ha-1. Typical 
conifer plantations in Ireland already contain at least 50 Mg ha-1 before first thinning 
events, so L-band signals may not be sensitive enough to detect intermediate harvest 
events or accurately assess timber volume biomass in mature stands.

Biomass-backscatter regression models have been developed using field 
measurements and corresponding L-band signal data (Dobson et al. 1991, Huang et al. 
2015). Given the non-linear nature of the relationship between the L-band backscatter 
signal and biomass values, transformation of the data is required in order to simplify the 
curve-fitting procedure. However, few studies have assessed the effectiveness of such 
data transformations in terms of overall regression model performance. Moreover, 
little consideration has been given to the analysis of normality and heteroskedasticity 
of model residuals to test data transformations, model forms and performance. This 
may result in a biased estimation of biomass, particularly in the range where L-band 
signals for biomass are saturated. 

In this study, we assessed the performance of biomass and L-band backscatter-
regression models to accurately detect changes in biomass due to forest disturbance 
by a) applying procedures to reduce interference due to variations in radar incidence 
angle and surface moisture, b) cross image calibration using forest and non-forest 
plot data to increase the biomass saturation point and c) comparing different data 
transformations and model formulations.

Materials and methods
Study area and SAR data
The study area covers four different regions of Ireland (Figure 1), representing forest 
and site types. The soil type across sites varied from wet peatlands in the west to 
drier mineral soils in the Wicklow mountains in the east. Topography varied from flat 
lowlands in Kildare and Carlow to mountainous regions in Wicklow and Cork. 
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The Phased Array-type L-band Synthetic Aperture Radar (PALSAR) on-board 
the Advanced Land Observation Satellite (ALOS) operated from January 2006 to 
May 2011 (Rosenqvist et al. 2007). The PALSAR instrument operated at L-band 
(λ~24 cm) offering fully polarimetric features. The scenes were acquired in Fine 
Beam Dual-Polarisation (FBD) mode (horizontal transmit and horizontal receive 
(HH) and horizontal transmit and vertical receive (HV)) from ascending orbits 
which had a recurrence cycle of 46 days. The incidence angle of each image at scene 
centre was approximately 38°. To cover the entire study area, two frames of the 
same acquisition date were acquired. Data were acquired for the summer months of 
May-June (2007-2010) for this study (Figure 1). The data frames ordered for sites in 
Cork, Donegal, Wicklow and Mayo included some portions of neighbouring sites as 
can be seen in Figure 1.

SAR Pre-processing
Through the European Space Agency (ESA) Category -1 proposal (Id 17771), single 
look complex (SLC) products were acquired. PALSAR 1.1 level dual polarised SLC 
data were multi-looked at one time in range and four times in azimuth direction to 
create 15 × 15 m pixels. After co-registration of the images, the data were filtered 
using a DeGrandi multi-temporal speckle filter to reduce speckle. The images were 
calibrated radiometrically and geometrically and the digital number was converted to 
decibel (dB) using Eq. 1 from Shimada et al. (2014) and Woodhouse (2006).

𝛾𝛾𝛾𝛾𝛾 𝛾
𝜎𝜎𝜎𝜎 𝛾
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(1)[1]

where,𝛾𝛾𝛾is the backscattering coefficient normalised with the cosine of the incidence 
angle, expressed in dB,𝜎𝜎𝜎 (Backscattering coefficient or differential radar cross-
section) = 10×log10 (DN); DN is the pixel digital number value in HH or HV, and

𝛾𝛾° =
𝜎𝜎°
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (1) 

	
is 

the local incidence angle.
To ensure proper geometric correction of the SAR scenes, an OSi Digital Elevation 

Model (DEM) of 10 m spatial resolution and many ground control points (GCPs) 
was used. The scenes were geometrically corrected to the Irish Transverse Mercator 
(ITM) projection. Terrain-induced distortions such as layover and shadowing were 
masked off from the images. The local incidence angle (angle between the normal to 
the backscattering element and the incoming radiation) generated by the DEM was 
used to identify the layover and shadowed areas, where negative values represented 
active layover areas and values greater than 90° represented active shadow areas. 
Finally, the two frames covering each study site were mosaicked. The SAR processing 
steps were carried out using SARscape 5.0.001 software within an ENVI environment 
of version 4.8.
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Correction for incidence angle
Even after the rigorous radiometric calibration, variations in the backscatter coefficients 
can be observed. This is due to the dependence of backscatter energy on the incidence 
angle. To equalise these variations, SARscape applies a cosine correction to the 
backscattering coefficient in the radiometric correction and normalisation step of the 
SAR processing. This is based on a modified cosine model by Ulaby and Dobson (1989).

Figure 1: Areas covered by the acquired data frames (red boxes).

Ireland - Study Sites
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Correction of backscatter signals for soil moisture and cross image normalisation
Huang et al. (2015) outlined the sensitivity of the backscatter signals to soil moisture, 
which masks the biomass-backscatter response, particularly in the biomass value 
ranges from non-forest to pre-maturity (i.e. before saturation point). The authors 
propose a two-step normalisation procedure. The first backscatter correction ( #

#𝜎𝜎" 	 )
makes use of the saturation point of a near-mature forest (S1) relative to the original 
target backscatter signals from the National Forest Inventory (NFI) (	𝜎𝜎%%	) in order to 
increase the biomass saturation point at higher levels of biomass. The second step 
normalises the signal (𝜎𝜎""#

# 	) using the backscatter signals (S2) of both the near-
mature forest (S1) and a nearby clearcut area, to reduce the impact of the soil moisture 
signal by subtracting it from the total signature. Detailed methodologies are outlined 
by Huang et al. (2105).

Reference clearfelled stands (S2) and mature stands (S1) were selected within a 
3 km radius of the target plot (i.e. NFI plot) using Coillte Teoranta’s (Irish Forestry 
Board) forest parcel inventory database. L-band backscatter HV signals for the 
reference stand were processed and corrected for angle of incidence using the same 
procedures described in the sections above. Reference stands were selected using 
the buffer proximity function in ArcGIS v10.2. All S1 stands were selected using a 
biomass threshold value of 350 Mg ha-1, which is well above the backscatter signal 
saturation point. The status of S1 stands was visually verified using 2011 Bing 
imagery orthophotographs. It was assumed that a mature stand in 2011 would still 
have a biomass value well above the signal saturation level of c. 100 Mg ha-1 in 2007. 
The status of S2 stands was verified using Coillte’s management and felling records 
for 2006 and 2007.

Field data
Biomass data for target SAR L-band backscatter values in the HV polarisation were 
derived from the 2007 NFI (Forest Service 2007a). The NFI is based on a random 
stratified permanent sample system, from which c. 2,000 500 m2 permanent plots are 
measured for tree and stand metrics. Biomass and timber volume are provided by the 
NFI (Forest Service 2007b) using biomass algorithms and stem volume equations 
published by Duffy et al. (2013) and Black (2016). The biomass component represents 
all aboveground elements including stems, branches and leaves above a stump height 
of 1% of total tree height. Timber volume was assessed from a stump height of 1% 
of total tree height to a top end diameter of 7 cm. A total of 450 permanent sample 
plots were identified in the selected study area, of which 297 were selected for 
analysis (SAR data were not available for the remainder), which was required when 
calibration and corrections to the backscatter data were made. A statistical summary 
of the selected plots is shown in Table 1. The aboveground biomass (AGB) for the 
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297 plots varied from 0 to 788 Mg ha-1. Timber volume was derived for 207 of the 297 
plots with a range of 0 to 650 m3 ha-1 (50 plots were temporarily unstocked, and 40 
contained trees with a DBH less than 7 cm). 

Regression models for biomass mapping
A range of curve fitting procedures were tested to select the most suitable regression 
model to predict biomass from the HV backscatter signals. Three curve functions 
were compared using linear regression analysis and model testing procedures in the 
R studio package (Venables and Ripley 2002). The first function is the published 
exponential model (Eq. 2), which describes the non-linear relationship between 
biomass and backscatter signals (Huang et al. 2015).

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑒𝑒&'()** (2) 
	

[2]

where, AGB is aboveground biomass (Mg ha-1) and 	𝜎𝜎%%	 is the incidence angle corrected 
L-band HV backscatter signal (dB). The equation was rearranged to facilitate linear 
regression modelling (Eq. 3, Model 1).

ln 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑎𝑎 + 𝑏𝑏𝜎𝜎++  (3) 
	

 [3]

The second function (Eq. 4, Model 2) is an inverse exponential model. This is 
fundamentally different since here AGB is assumed to be proportional to the inverse 
of 	𝜎𝜎%%	 rather than untransformed 	𝜎𝜎%%	.

ln 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑎𝑎 + 1/𝑏𝑏𝜎𝜎-- (4) 
	

[4]

The final model (Eq. 5, Model 3) assumed that the relationship is best described 
using a hyperbolic function. This best suits the assumption that biomass is fully 
saturated in mature forest, while exponential functions never reach an asymptote.

1/AGB = 𝑎𝑎 + 𝑏𝑏(1/𝜎𝜎,,)   (5) 
	

  [5]

To select the best model, a number of goodness of fit parameters were tested, such 
as root mean square error (RMSE), bias and coefficient of determination (R2). Further 
regression analysis of predicted and observed values was performed together with a 

Table 1: A statistical summary of selected plots used for the biomass and volume regression 
models.
Parameter Mean Min Max N
Stocking 1,124 0 3,578.0 297
Basal area (m2 ha-1) 15 0 73.0 297
DBH (cm) 22 0 53.7 297
AGB (Mg ha-1) 222 0 788.0 297
Volume (m3 ha-1) 157 3 650.0 207
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normality test on model residuals using the Shapiro-Wilk statistic in the R studio. The 
distribution frequency was considered not to be normal if the p-value of the Shapiro-
Wilk estimate was less than 0.05. We also used Akaike Information Criteria (AIC) 
for model selection to avoid over parameterisation of the model (see Burnham and 
Anderson 2002), based on the assumption that the lowest AIC values were optimal.

Once the best biomass model was selected, the three separate normalisation and 
correction backscatter estimators were tested to assess if the signal correction and 
cross image normalisation procedures improved the prediction of biomass.

Finally, all backscatter variables (i.e. 	𝜎𝜎%%	, #
#𝜎𝜎" 	  and 𝜎𝜎""#

# 	) and additional predictors, 
such as moisture index (SMR), soil nutrient index (SNR), topographical index (TPI), 
elevation, aspect, slope and radar angle on incidence (RAI) were added to the model 
using multiple regression modelling in a forward stepwise manner using an R studio 
(Venables and Ripley 2002). The best model fit was selected based on AIC, with 
new variables included in the model only when AIC was lower than the initial or last 
model iteration. The values for SMR, SNR and TPI were derived from an ecological 
site classification model described for Irish forests by Ray et al. (2009) and Black et 
al. (2014). The SMR index is based on water holding capacity and SNR is the soil 
nutrient status of different soil types in the NFI plots. TPI was used as an indicator of 
topex (Black et al. 2014). These variables were selected because they may influence 
the backscatter signal and further explain variation in biomass at a given backscatter 
value.

Results
SAR correction and normalisation
The angle of incidence corrected SAR L-band backscatter values, in the HV polarisation 
(	𝜎𝜎%%	) ranged from -28.22 to -12.82 dB (Table 2). The first step correction ( #

#𝜎𝜎" 	 ) did not 
have any significant effect on the data structure in terms of the frequency distribution 
and the range of observed values (Table 2). The cross-image normalisation (𝜎𝜎""#

# 	) did,  
as it increased the backscatter value range by -1 to 5 dB and skewed the frequency 
distribution to the right (i.e. higher 3rd quartile percentage and maximum dB values, 
compared to the non-normalised data, Table 2).

Biomass model selection
The first step was to select the best curve fitting procedure using the three models 
(Eqs. 2, 3 and 4). Goodness of fit estimators showed that model 1 (i.e. the exponential 
model, Eq. 2) provided the best fit, in terms of the lowest RMSE, bias, AIC and R2 
values and the highest F-value from AVOVA (Table 3).

All regressions equations and coefficients were significant at P <0.001. However, 
the Shapiro-Wilk test on model residuals (i.e. observed minus predicted AGB values) 
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suggested that the data were not normally distributed (Table 3). All model residuals 
also displayed uneven distributions across the observed AGB range, suggesting a 
problem of heteroskedasticity. For example, plots of Model 1 residuals displayed a fan 
shaped pattern, characteristic of heteroskedasticity, where residual errors increased 
as AGB increased (see top right panel in Figure 2). It is also evident that model 1 
significantly underestimated biomass at the AGB range above 400 Mg ha-1 (Figure 2 
top right panel).

In order to further refine the performance of AGB regression model, the angle 
of incidence corrected backscatter predictive values ( #

#𝜎𝜎" 	 ) used in Model 1 were 
substituted with the step 1 corrected ( #

#𝜎𝜎" 	 ) and step 2 normalised (𝜎𝜎""#
# 	) values and 

tested for goodness of fit. Although the 1st step correction (𝜎𝜎""#
# 	) was supposed to 

increase the backscatter signal saturation point and improve on the AGB prediction, 
this model did not perform any better than model 1 (Table 3). In contrast, the higher 
AIC for Model 4 suggested the goodness of fit decreased slightly.

Cross-image normalisation of backscatter for soil moisture did appear to increase 
model performance (Model 5, Table 4 and Figure 2), when compared to the other 
models, in terms of a lower AIC and RSME values. Analysis of residuals suggested a 
non-normal distribution of residuals based on Shapiro-Wilk. Residual plots also show a 
slight skewing of the frequency distribution, but with no systematic bias in the prediction 
at high or low observed AGB values (bottom right panel in Figure 2). The residual error 
for Model 5 also appears to be more normally distributed about the observed AGB data 

Table 2: Summary statistics for HV backscatter signals following different correction and 
normalisation procedures.

HV signal Min. 1st Qu. Median Mean 3rd Qu. Max.
	𝜎𝜎%%	 -28.22 -21.09 -18.22 -19.05 -16.82 -12.82

#
#𝜎𝜎" 	 -28.66 -21.34 -18.63 -19.27 -16.94 -12.71

𝜎𝜎""#
# 	 -29.20 -20.92 -18.10 -18.83 -15.48 -7.45

Table 3: Biomass-backscatter curve fit statistics based on the HV backscatter values 
corrected for angle of incidence (	𝜎𝜎%%	). F-values for ANOVA and Shapiro-Wilk values for 
normality tests are significant at P <0.0001 (***).
Fit parameter Model 1 Model 2 Model 3
RMSE 121.3 125.2 127.4
Bias 2.14 -7.6 11.8
R2 0.54 0.43 0.38
F-value 343 *** 217 *** 190 ***
AIC 187 195 275
Shapiro-Wilk 0.46 *** 0.53 *** 0.85 **

00741 IFJ74 - Book 2017.indb   16 19/01/2018   11:56



17

IrIsh Forestry 2017, Vol. 74

range, when compared to the scatter plot for Model 1, thus indicating that cross-image 
normalisation may reduce the occurrence of heteroskedasticity of model residuals.

The final step of the model development was to introduce additional terms into 
a multiple regression equation to ensure normal distribution of model residuals. Site 
aspect were also tested in the model because a digital elevation model (DEM) was used 
to correct backscatter values for angle of incidence. Inclusion of aspect and satellite 
angle of incidence in the predictive biomass model did not reduce the AIC value so 

Table 4: Biomass-backscatter model selection using the best curve fit (Model 1) and different 
corrected and normalised HV backscatter values. The RMSE and bias estimates are based 
on the observed and predicted AGB values, not the ln(AGB). F-values for ANOVA and 
Shapiro-Wilk values for normality tests are significant at P <0.0001 (***), P <0.01(**) and 
P <0.05(*).

Backscatter value

Fit parameter Model 1  Model 4  Model 5  
RMSE 121.3 123.4 119.7
Bias 2.14 3.44 2.32
R2 0.54 0.53 0.58
F-value 343 *** 299 *** 361 ***
AIC 187 199 167
Shapiro-Wilk 0.46 *** 0.59 *** 0.38 *

Figure 2: Scatterplots showing the relationship between HV backscatter signals and observed 
AGB values from NFI plots (left panels, a) and residual versus observed AGB plots (right 
panels, b) for model 1 and model 5. The solid line plots in the left panels show the fitted 
regression curves for the models with 95 % confidence intervals (dashed line plots). 
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these variables were excluded from the model. A plot of Model 5 residuals against 
aspect and angle of incidence did confirm that these factors were not contributing to 
the non-normality (i.e. bias) of model residuals (data not shown).

The final model selection was based on forward model selection using AIC as 
the selection criteria. The stepwise regression started with Model 1; predictors were 
then added to the multiple regression in steps provided their addition resulted in a 
reduction in the model AIC value (Table 5). The final Model (Eq. 6, Model 4) included 
all backscatter signal correction and normalisation values and the digital elevation 
(Alt, m) of the site, as assessed during the NFI plot surveys:

ln 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑎𝑎 + 𝑏𝑏*𝜎𝜎,, + 𝑏𝑏-𝜎𝜎′,, + 𝑏𝑏/*𝜎𝜎′′,, + 𝑏𝑏0𝐴𝐴𝐴𝐴𝐴𝐴  (6) 
	

[6]

The same procedure was carried out to develop a predictive model for timber 
volume (vol, m3 ha-1), but the final model produced the best AIC fit with less terms 
(Eq. 7, Model 5).

ln 𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑎𝑎 + 𝑏𝑏*𝜎𝜎′-- + 𝑏𝑏.𝜎𝜎′′-- (7) 
	

[7]

The initial AGB Model 1 had a corresponding AIC value of 187 and the final 
model produced an AIC value of 158 (Table 5). Addition of the predictors SMR, 
slope, radar angle of incidence (RAI) and TPI did not improve on model performance 
(i.e. AIC values were >158).

The final model provided the best estimation of AGB in term of the lowest AIC 
value. More importantly, all linear regression model assumptions were robust given 
that model residuals were normally distributed based on the Shapiro Wilk value test 
(Table 5).

The initial timber volume model used the intercept (a) and 	𝜎𝜎%%	 for forward 
stepwise model selection, resulting in an initial AIC of 36, and a final AIC value of 
24 (Model 7, Table 5). However, analysis of residuals for Model 7 suggests a non-
normal distribution, indicating that estimation of timber volume is not valid across the 
observed timber volume range (i.e. the Shapiro-Wilk value was significant, Table 5).

Detection of clearfell events
It was not possible to model clearfell events using the NFI data because only three 
occurred across all of the selected NFI plots over the period 2007 to 2011.

Discussion
Huang et al. (2015) used the same model formulations initially used in this study 
(i.e. Eq. 2) and predicted similar values for the solved coefficients a (12.4) and b 
(0.6) using corrected and normalised values from PULSAR HV, when compared to 
the findings presented in this study (i.e. model 5, Figure 2). They reported a better 
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model fit, compared to our model 5 (Table 4), in terms of a higher R2 (0.65) and 
a lower RMSE (45 Mg ha-1). However, Huang et al. (2015) and others (Ryan et 
al. 2012) provided no information regarding the goodness of fit in terms of model 
residual analysis. In our study, we found that the widely used model formulation does 
not provide a suitable fit because of the non-normal distribution of model residuals, 
and evidence of heteroskedasticity (see Figure 2a, Table 4). The main reasons 
for heteroskedasticity and a non-normal distribution of model residuals include: 
a) use of inappropriate model formulations (i.e. selection of unsuitable equation 
types to suit the data pattern), b) exclusion of predictive variables that may better 
characterise variations in biomass or c) inadequate data normalisation procedures 
of model predictors or observed values. Transformation prior to regression analysis 
and subsequent normality testing of predicted and biomass data and testing of 
different model formulations confirmed that omission of parameters that are in 
fact contributing to the variation in the data creates the conditions of bias in the 
model. Upon visual interpretation of the scatterplot for biomass versus backscatter 
singles, one may consider that a hyperbolic curve may be a more representative 
model formulation. However, based on the presented curve fitting comparisons, it 
is apparent that the widely used exponential curve appears to be most appropriate 
model to apply (Table 3). The correction for backscatter saturation did not appear 
to improve model performance, when compared to un-corrected values (Table 4). 
However, by using the cross-image normalisation procedure proposed by Huang 

Table 5: Fitted coefficients with standard error in parenthesis and performance of the final 
models (Model 6) for biomass (AGB, Mg ha-1) and (Model 5) for timber volume (vol, m3 ha-

1) using forward stepwise multiple regression. The RMSE and bias estimates are based on 
the observed and predicted AGB and volume values, not ln(AGB) or ln(vol). F-values for 
ANOVA and Shapiro-Wilk values for normality tests are significant at P <0.0001 (***) and 
P <0.01(**).
Coefficient/Parameter ln(AGB), Model 6 ln(vol), Model 7
a 13.515 (0.571) 8.041 (0.576)

b1 (	𝜎𝜎%%	) 0.043 (0.013) n.s.

b2 ( #
#𝜎𝜎" 	 ) 0.221 (0.077) 0.066 (0.035)

b3 (𝜎𝜎""#
# 	) 0.218 ( 0.132 (0.031)

b4 (Alt) -1.125E-03(7.65E-04) n.s.
RMSE 97.4 132.0
Bias 0.61 49.10
R2 0.61 0.17
F-value 93*** 24**
AIC (initial) 187 36
AIC (final) 158 24
Shapiro-Wilk 2.70 0.94**
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et al. (2015) and by including additional variables in a multiple regression model, 
we demonstrated that issues of heteroskedasticity and non-normal distribution of 
residuals can be resolved (Table 4).

It was not clear if the backscatter interference due to moisture variations were 
completely resolved using the cross-image normalisation procedure proposed by 
Huang et al. (2015). This can perhaps be further refined using empirical approaches 
based on detailed climatic data for all radar scenes and for multiple observations on 
sampled data from non-forest and mature forest reference sites.

The analysis suggests that HV backscatter corrections for radar angle of 
incidence may have been adequate because inclusion of the angle of incidence 
in the multiple regression did not improve model performance. Although the HV 
signal was corrected for angle of incidence using DEMs, since altitude (Alt) was 
still found to be a significant predictor of biomass from backscatter signals, but it 
may be suggested that the resolution of the DEM was not sufficient to adequately 
correct for angle of incidence. Interestingly, the negative slope of the coefficient 
for Alt (see b4 for model 6, Table 5) indicated that stand/site biomass decreased as 
altitude increased. Such a finding is consistent with currently used forest ecological 
site classification models (Ray et al. 2009, Black et al. 2016). 

Use of L-band backscatter signals to predict forest biomass do not appear to 
be sufficient to provide precise estimates at the higher ranges (>100 Mg ha-1) - 
as indicated by the high RMSE values, the larger confidence intervals where the 
backscatter signal saturated and the heteroskedasticity problem for the timber 
volume model. The model estimates for biomass, developed in this study is 
consistent with previous suggestion that backscatter saturation occurs at c. 100 Mg 
ha-1 (Figure 2, Ryan et al. 2012), so accurate determination of biomass using this 
approach may be limited to immature forest stands up to the first thinning stage 
for conifer crops (stand ages 16-25 years old). It is suggested that use of a longer 
wavelength P-band may be a more suitable approach to prediction of biomass and 
volume at higher levels (Dobson et al. 1991). However, L-band backscatter-biomass 
models may be suitable to detect changes in forest biomass or volume due to clear-
felling or catastrophic disturbance events. Unfortunately, this could not be validated 
in the current study area due to the limited number of NFI plots that were clear-
felled between 2007 and 2011.
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