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Extending Forest Inventories and Monitoring 
Programmes Using Remote Sensing: A Review

Daniel McInerneya, Juan Suarezb, Maarten Nieuwenhuisc 
Abstract
This paper presents a review of remote sensing technologies that are applied in forestry. It 
presents an overview of the data sources and applications that are used to map, monitor and 
estimate forest parameters. In particular, it deals with methods that use data from space borne 
sensors as well as methods that utilise terrestrial, active remote-sensing methods. The paper 
also comments on techniques that have already been used in Ireland, but also discusses other 
methodologies that are relevant to the Irish forest sector, including supporting field based 
inventories, updating digital map datasets and providing high-resolution forest stand estimates 
at a range of scales. In addition, the paper presents techniques to monitor land-use, land-use 
change and forestry (LULUCF) and to upscale field plot measurements with remotely sensed 
data. 
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Introduction
Field inventory techniques have been employed in forestry to assess and monitor 
forests at a range of scales, from stand management through to regional and national 
inventories. These inventories are based on sampling methods - either random, 
systematic, stratified or cluster sampling. Using the data collected during these 
inventories, they provide a direct means of inferring forest parameter estimates of 
forest areas. 
	 Due to the extent of forest resources, forest practitioners have long considered 
remotely-sensed imagery as a useful source of data to incorporate into their inventory 
and monitoring practises. Aerial photography has been used since the early 1940s to 
map the extent of forest resources as well as to derive other stand information, such as 
species composition and the extraction of tree height using stereo-photos (Lund et al. 
1997). Its use, now in digital format, continues to be widespread within national and 
stand forest inventories; however, in recent years, in some cases their use has been 
replaced by spaceborne satellite imagery due to its comparatively lower cost per unit 
area (Tomppo et al. 2008a; McRoberts et al. 2002).
	 Since the launch of the first Landsat sensor in 1972, the multi-spectral nature of the 
resulting images has been integrated into regional and large-scale forest monitoring 
programs (McRoberts and Tomppo 2007). Although the spatial resolution (the 
individual size of each picture element) is coarser than in aerial photography, the 
synoptic view, image information from a wider light spectrum and large extent of 
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multi-spectral satellite images offers substantial advantages for forest inventories. Over 
the past four decades the number of Earth observation satellite sensors has increased 
exponentially, ranging from low resolution to very high spatial resolution imaging 
sensors. More recently, active sensors, such as RADAR and LiDAR instruments have 
gained considerable popularity due to their ability to record data independently of 
light and prevailing weather conditions, whilst producing high resolution information 
pertaining to the structure of the Earth’s surface and, in particular, living vegetation. 
	 The aim of this paper is to provide a comprehensive review of remote sensing 
research and operational use cases relevant to forest monitoring and forest inventory 
programmes. It focuses on the use of optical satellite imagery and active remote-
sensing data for forest mapping and outlines the principle advantages and limitations 
of these technologies within forestry applications in Ireland. It concludes with an 
outlook on future developments in earth observation science and an overview of 
opportunities that exist for forest monitoring at a range of spatial scales.

Remote Sensing
Remote Sensing can be very loosely defined as a process of collecting information 
without coming in contact with the object (Lillesand et al. 2008). With respect to 
Earth observation, it can be considered to relate to the acquisition of imagery of the 
Earth’s surface.
	 Efforts to acquire aerial imagery began at the start of the 20th Century using 
cameras mounted on aeroplanes, balloons and kites. These technologies were adapted 
and refined largely for military reconnaissance purposes during the First and Second 
World Wars (Campbell 2002). The benefit of this technology was subsequently 
identified and used by geographers, geologists and land resource managers (Campbell, 
2002). It has long been acknowledged that much information relevant to forestry is 
discernible on a variety of image datasets and, as a result, a myriad of techniques has 
been developed to classify forest land in terms of forest related variables that can 
be seen on the imagery (Horler and Ahern, 1986; Varjo 1996; Wynne et al., 2000; 
McRoberts et al. 2002; Pekkarinen et al. 2009).
	 The first step to acquire space borne remotely-sensed data was taken by the United 
States National Aeronautics and Space Administration (NASA) on the 23rd of July 
1972 with the successful launch of the Earth Resources Technology Satellite (ERTS-
1), which was later renamed Landsat 1. The Landsat program continued and the 
technology improved as new sensors were launched. This has led to one of the largest 
and most comprehensive archives of remotely sensed imagery of the Earth, spanning 
four decades. This archive was recently made publically available free of charge 
by the United States Geological Survey at http://glovis.usgs.gov. After Landsat, 
numerous countries began to develop and launch their own sensors (e.g. France with 
the Systēme Pour l’Observation de la Terre (SPOT) in 1986, India Remote Sensing 
in 1989/1991, European Space Agency ERS sensor in 1991, the Disaster Monitoring 
Constellation [DMC] based in England in 2002, and a range of privately owned 
sensors, for example Ikonos in 1999). As a result, in the 21st century numerous sensors 
are acquiring imagery of the Earth at a range of spatial and spectral resolutions with 
varying swath widths. In addition, the development of sensor technology is advancing 



Irish Forestry

8

and improving at a very fast rate with an associated decrease in the image cost per unit 
area.

Techniques of forest monitoring
Over the last decade there has been an increased need to monitor forests to assess 
national-level compliance with international conventions and to quantify global 
public goods, such as protected forest areas and the contribution of forests to carbon 
sequestration (World Bank 2008). Data emanating from national forest inventory 
and remote sensing are both objective means of addressing these needs. Both can be 
precisely overlaid between different time periods within specific geographic areas 
and can be used for retrospective spatial analysis. However, the spatial scales relating 
to the estimation of parameters differ substantially when national forest inventories 
(NFI) data are used in isolation or in conjunction with satellite imagery.  In addition, 
data acquired from satellite sensors tends to be updated at much more regular and 
consistent intervals. 
	 Numerous studies have demonstrated that remote sensing can substantially 
improve forest resource assessments with respect to the added value that the data offer 
to estimate and map forest variables at a range of scales. In addition, they provide an 
objective source of data, which can be used for repeated and retrospective analysis 
(Reese et al. 2002; McRoberts 2008; Tomppo et al. 2008a).
	 Forest inventories, notably NFIs, extend over large areas and the synoptic view of 
the landscape provided by remote sensing systems is clearly advantageous. In addition, 
the repeated acquisition and the objective nature in which the images are acquired are 
considerable benefits, thus complementing sample-based forest inventories. These 
benefits were identified during the early 1980s and research was initiated to assess 
the potential of integrating remotely sensed data into forest monitoring programmes 
(Häme et al. 1987; Tomppo 1991). Remotely sensed data have since been used for:
	 •  	 classification (identification of forest, land-use and/or land-cover classes);
	 • 	 estimation or prediction of continuous parameters, for example timber 
		  volume or basal area per hectare.

Classification Studies
Satellite image classification uses spectral information represented by the satellite 
image spectral bands to classify each individual pixel based on the spectral information 
stored in the image pixel. This type of classification is termed spectral pattern 
recognition. In general, the classification process assigns each image pixel to a one 
landcover (e.g. water, coniferous forest, deciduous forest, corn, wheat, etc.) or landuse 
(forest agriculture, urban fabric etc.) class. The resulting classified image consists of 
a mosaic of pixels, each of which belong to a particular theme, and is considered a 
thematic “map” of the original image. Satellite image classification can be carried out 
in two ways: unsupervised, where no training or reference information is provided to 
aid the classification and generally used for exploratory image analysis or, supervised 
where an expert provides ‘ancillary data’ to guide the classification algorithm. 
	 The use of imagery acquired by different sensors has led to a range of applications 
to map forests at different scales. Forest classification over large areas has long 
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been researched to provide broad classifications of forest types. European efforts 
have included the use of data from the Advanced Very High Resolution Radiometer 
(AVHRR) sensor system (Häme et al. 2001; Schuck et al. 2003), while more recently 
this work was extended by Pekkarinen et al. (2009) to improve the classification of 
European forest cover using Landsat ETM+ data and the Corine Land Cover 2000 
(CLC2000) database and a k-means clustering and kNN technique. Similar approaches 
were employed by Hagner and Reese (2007) in Sweden to provide an automatic 
classification of forest types for use in the CLC database derived from Landsat TM/
ETM+ data, field inventory data and a neural network. 
	 Horler and Ahern (1986) utilised spectral radiation data from Landsat TM image 
scenes as a means of identifying the separability of forest classes in a study area in 
western Ontario, Canada. Two main techniques were used, namely feature selection 
and principal components. Feature selection, is a statistical technique that selects a 
subset of explanatory variables based on their importance to build robust statistical 
models thereby improving classification performance. Principal component analysis 
(PCA) is another statistical technique that transforms a number of potentially 
correlated explanatory variables into a number of uncorrelated bands. This technique 
is frequently used to reduce or compress the number of explanatory variables into a 
number of principal components, in which the first two components hold the majority 
of the information of the entire set of variables. In the above mentioned study, it was 
found that the best three TM bands (3, 4 & 5) were almost as good as the first three 
principal components.  
	 Decision tree methods (i.e. techniques that recursively partition a dataset based on 
binary rules) have been used by researchers to analyse and classify remotely sensed 
data as an alternative approach to traditional image classification approaches for 
landcover mapping (Hansen et al. 1996). A non-parametric supervised classification 
based on a decision tree model was used by Joy et al. (2003) to classify vegetation 
types in Arizona using field inventory data, Landsat TM imagery and additional 
spatial data. The overall accuracy achieved was 74.5%, with errors caused by the lack 
of clear differentiation between mixed conifer and spruce dominated stands. Brown 
de Coulston et al. (2003) used a decision tree method with field observations and 
Landsat ETM+ data to map vegetation types in Pennsylvania, USA, and achieved an 
accuracy of 99.5% when only forest and non-forest classes were considered. Landuse 
data at different scales were used in conjunction with Landsat data and a regression 
tree method in the Amazon by Cardille and Clayton (2007) to reinterpret existing 
land-cover classifications by determining what categories are most highly related to 
the polygon land-use data across the study area. It is important to point out that the 
above-mentioned errors are based on the estimation errors that are calculated at a 
pixel level, i.e. the level of agreement and disagreement between validation pixels 
with those in the classification. These pixel-based errors do not, however, provide 
a means of calculating the errors associated with the area estimates of the different 
vegetation cover types within the study area, which are frequently sought.

Forest Parameter Estimation Studies
With respect to forest parameter estimation, Franklin (1990) concisely summarised 
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the methodology involved in these approaches as follows:
	 1. 	 Establish a number of field inventory sampling points;
	 2. 	 Collect forest structure information at these points;
	 3. 	 Use remotely-sensed satellite imagery, locate the points on the image;
	 4. 	 Extract the image features relating to each sampling point;
	 5. 	 Develop the model relating the field data to the image features;
	 6. 	 Use the model to predict the forest parameters based on the spectral data;
	 7. 	 Develop and select error estimation methods;
	 8.	 Validate the predictions and estimates at pixel level and for different areal 
		  units.

	 Once a suitable model is produced using the image features as explanatory variables, 
the model is inverted to predict the forest stand characteristics for unsampled forest 
areas. The range of datasets that have been integrated into these types of inventories 
is diverse, but in general the modelling techniques have relied on regression models, 
such as stepwise regression, regression trees, most similar neighbour and k-Nearest 
neighbour (kNN) estimation. However, other techniques such as neural networks 
(Atkinson and Tatnall 1997) and boosting and bagging (Briem et al. 2002) also exist, 
whose properties and configurations vary based on the inventory, image and ancillary 
datasets used.
	 The integration of remotely sensed satellite imagery with field inventory data for 
the estimation of forest stand parameters dates back to the 1980s. Forest classification 
maps were already used effectively for stratification purposes and to plan field surveys, 
and it soon became clear that spatially explicit estimates of forest parameters would 
be highly useful to support strategic forest management and planning.
	 As in all remote sensing applications, the measurement and estimation of forest 
resources relies on the interactions of electro-magnetic radiation with the target object 
and subsequent analysis of the returned signal recorded by the sensor. Statistical 
relationships between the EMR signal and the forest parameters are then analysed. 
One of the earliest applications in this area was developed by Jaakkola (1983), who 
used Landsat TM imagery within a multi-stage timber inventory in a study area 
in Finland. His research consisted of estimating timber volume using regression 
equations that used the image data as independent variables. Timber volumes of 
Scots pine and Norway spruce were quantified by Ardo (1992) using the spectral 
values from Landsat 5 TM imagery for a study area in southern Sweden. Data from 
99 randomly selected forest compartments were used to develop a regression model 
between spectral radiation data and the measured timber volume. The predictions 
were then compared against 99 forest compartments located within the study area of 
1,335 ha for which field data were available and it was found that there was a close 
correlation between the measurements and predictions.
	 Häme et al. (1987) used spectral data from three SPOT 1 XS images to estimate 
stand characteristics ranging in size from 0.5 - 5 ha in Finland. The parameters 
estimated using regression models included tree stem volume, mean age and mean 
diameter. It was concluded that better estimates could be achieved using Landsat TM 
imagery as opposed to SPOT-1 due to the higher spectral resolution of the Landsat 
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data, despite the higher spatial resolution of the latter sensor.
	 Research in this area continued to be pioneered by Scandinavian researchers, 
who were first to successfully integrate such a method into a NFI (Tomppo et al. 
2008b). The Reference Point Sample (RSP) technique was proposed by Kilkki and 
Paivinen (2006) as a pixel based approach that assigns known ‘reference’ pixel data 
to unknown pixels through a weighting system. This was subsequently refined to 
integrate additional sources of data and was implemented by Tomppo (1991) on an 
operational basis within the Finnish National Forest inventory. This technique was and 
remains fully operational within the Finnish NFI and it has become known as ‘Multi-
Source National Forest Inventory’ (MSFI) (Tomppo 1996), as it not only combines 
field inventory data with optical satellite imagery, but also uses digital terrain and 
ancillary spatial data. MSFI is underpinned by k-Nearest Neighbour (kNN), a non-
parametric statistical estimation technique. The process links field inventory plot data 
with spectral responses of a satellite image and imputes the known variables of field 
plots to unsampled forest areas. This basic principle was adapted by other researchers, 
who proposed methods related to kNN, but which differed based on the underlying 
statistical relationships, e.g. most similar neighbour (Moeur and Stage 1995) and 
Gradient Nearest Neighbour (GNN) (Ohmann and Gregoire 2002).
	 The following describes the technique in very broad terms, but for further details 
on this technique, the reader should consult the following references (Fix and Hodges, 
1951). However, in very broad terms the technique utilises two sets of observations, 
the first, the reference dataset contains the spatial location of the NFI plot, forest 
parameter plot estimate and associated spectral information retrieved from the satellite 
image based on its pixel or neighbourhood of pixels. The set of target pixels consists 
of all unsampled forest pixels for which a forest parameter estimate is sought. Each 
target pixel is assigned a weighted average of the plot level forest variables calculated 
from a subset of the reference data set that consists of the nearest pixels, based on the 
similarity of pixels in their spectral information. This basic principle was adapted by 
other researchers, who proposed methods related to kNN, but which differed based on 
the underlying statistical relationships, e.g. most similar neighbour (Moeur and Stage 
1995) and Gradient Nearest Neighbour (GNN; Ohmann and Gregoire 2002).
	 Due to its transparency and success, the MSFI approach was adopted and adapted 
to a variety of forest conditions. The Swedish Forest Authorities applied the technique 
within their NFI (Holmgren et al. 2000; Nilsson 2002) using a range of image datasets, 
but primarily using Landsat TM/ETM+, and more recently SPOT 4/5 XS imagery. 
The outputs from the Swedish MSFI have been applied to habitat modelling for 
moose and birds by Reese et al. (2002). The MSFI technique has been widely tested 
throughout the world: in New Zealand to assist in their preharvest inventory, where 
it was applied to a 1,000 ha block of Radiata pine (Tomppo et al. 1999), in Norway 
(Gjertsen et al. 1999; Gjertsen 2007), in Mediterranean forest conditions in Italy to 
estimate basal area using Landsat 7 ETM+ data (Maselli et al. 2005; Baffetta et al. 
2009), in central Europe where Koukal et al. (2005) tested the influence of radiometric 
calibration on forest estimates in the Austrian NFI, and for mapping temperate forest 
types in Scotland (McInerney and Suarez 2005).
	 A recent research area has focused specifically on the error estimation techniques 
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employed in remote sensing. Rather than only considering the calculation of 
errors (RMSE and associated standard errors) at pixel level, the use of measures to 
determine the uncertainty of predictions and/or classifications over larger geographic 
areas, extending outside of the study region, has been investigated. This is considered 
a necessary extension to the validation of remote sensing analysis as pixel based 
estimation techniques provide only necessary measures for individual study areas, 
and cannot often be used to make direct inferences over larger areas. Some examples 
of these types of calculations can be found in McRoberts et al. (2002), Tomppo and 
Halme (2004) and Kim and Tomppo (2006). 
	 It is evident from the above review that optical satellite imagery is being widely 
used to assist in the monitoring of forests and in the measurement of forest parameters. 
Similarly, a wide range of traditional as well as new statistical techniques have been 
employed in the analysis of satellite imagery, in conjunction with field inventory 
data, while a variety of ancillary datasets have also been integrated in the analysis 
procedures to improve the estimation of forest parameters and prediction of forest 
variables through pre- and post-stratification approaches.

Remote Sensing studies in Ireland
Over the past two decades a number of forestry remote sensing projects have been 
carried out in Ireland, primarily to assess the spatial distribution and composition of 
forest stands. The Department of Agriculture, Fisheries and Food continues to make 
operational use of Ordnance Survey Ireland (OSi) digital aerial photographs for the 
monitoring of the national forest estate, in particular to update forest vector maps and 
for pre-stratification of national forest inventory plots (Forest Service 2007). 
	 The largest national remote sensing project that was carried out in Ireland resulted 
in the creation of the Forest Inventory and Planning Systems (FIPS) datasets in 
1998. This project was lead by the Irish Forest Service with support from Coillte 
Teoranta, the European Commission’s Joint Research Centre in Italy and the National 
Remote Sensing Centre in the United Kingdom. Twenty forest development classes 
were mapped across Ireland using medium resolution optical satellite imagery from 
the Landsat TM sensors and digital aerial photographs. The satellite images were 
classified using a two-phase process consisting of a neural network and a maximum 
likelihood classification, which was carried out using SILVICS (McCormick and 
Folving 1998; Gallagher et al. 1999). The FIPS project superseded two pilot projects 
that had established the usefulness of remote sensing and digital spatial data for the 
identification of the spatial distribution of forest stands in Ireland (MacSiúrtaín et al. 
1994).
	 Following on from the development of FIPS, the Irish Forest Soils project was 
carried out by researchers at Teagasc to create a series of national, digital thematic 
maps that included a soil classification map, a map of parent materials and a landcover 
map (Bulfin et al. 2002; Loftus et al. 2002). These maps were produced through the 
use of satellite image classification and photogrammetric techniques, based on OSi 
aerial photography, digital terrain data and Landsat 5 TM imagery. 
	 Coillte Teoranta conducted a research study that focussed on the estimation of 
forest health in coniferous plantations using colour infra-red photography (Stanley 
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et al. 1996). In particular, the research exploited the use of the infra-red band of the 
aerial photos to assess the extent of discolouration within the foliage of coniferous 
tree species. 
	 More recently, a number of research studies have been carried out to evaluate 
the use of remote sensing for forest mapping and monitoring. McInerney and 
Nieuwenhuis (2009) estimated standing volume and basal area per hectare using field 
inventory data from the Irish NFI, medium resolution optical satellite imagery from 
the SPOT 4/5 sensors and ancillary spatial data. Pixel based estimates of the two 
above mentioned parameters were calculated for unsampled forest pixels (i.e. pixels 
with no NFI information) using two supervised non-parametric techniques, namely  
kNN estimation and the Random Forest algorithm in regression mode (Breiman 
2001). These techniques can be considered to be “supervised” in so far as a reference 
set of variables is used to impute values across the forest areas of the satellite image, 
based on a weighted average of the reference data. The weighted average is calculated 
based on the spectral similarity of the unsampled forest pixel to observations in the 
reference set. Within the study, it was found that at a pixel level, the relative Root 
Mean Square Errors (RMSEs) were approximately 50 – 59% for volume and basal 
area per hectare in a study area in the mid-west of Ireland. This research demonstrated 
that it is possible to regionalise NFI stand parameters using medium resolution satellite 
imagery. In particular, it demonstrates that it can produce more detailed, spatially 
referenced forest resource information at a regional scale than could be achieved from 
the sole use of NFI data. With some refinements, the methodology could be used on 
an operational basis to support field-based forest inventories in Ireland. In order to 
achieve this, it will be necessary to produce areal based estimation errors over large 
areas, e.g. at provincial and national levels, in addition to the pixel based estimation 
errors presented above.
	 As part of the Global Monitoring and Environmental Security (GMES) Service 
Element, a consortium lead by Metria, a Swedish Geomatics company, and supported 
by University College Dublin and the Irish Forest Service, carried out an image 
classification of Landsat TM/ETM+, SPOT 4/5 and IRS images for two study areas 
in Ireland, namely county Wicklow and parts of Mayo/Roscommon. The focus of the 
study was to produce a high resolution forest mask using a minimum map unit of 1 ha 
for three time dates: 1990, 2000 and 2006 (McInerney et al. 2010b). In particular, the 
project sought to map and quantify forest change, focusing in particular on afforestation 
on peatland areas and changes in forest cover during the 16-year period. Such research 
demonstrates the way in which LULUCF can be measured using archived satellite 
imagery and provide much needed information on the state of Irish forests. 

LiDAR
In recent years, light detection and ranging (LiDAR) data has gained considerable 
interest. This is due to the high quality and resolution of the returned datasets, which 
consist of three-dimensional point data from the top of the vegetative surface (Digital 
Surface Model) and non-vegetated surface (Digital Terrain Model). The datasets 
consist of points that are precisely located using a differential GPS and highly precise 
timing clock. Figure 1 provides a simplified overview of the processing of airborne 
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LiDAR data to derive forest based metrics. Raw LiDAR data are acquired over an area, 
with the raw data analysed within a processing system. The dataset consists of a first 
return, representing the top of the vegetation canopy, and a last return, representing 
the ground surface. In general, these returns are filtered to remove any anomalies and 
are interpolated to produce a continuous surface of values. These interpolated dataset 
produce the digital terrain model (DTM) and the digital surface model (DSM). The 
subtraction of the DTM from the DSM results in the canopy height model (CHM), 
which can be considered a digital representation of the top of the vegetation canopy or 
of the dominant trees. By using region growing and pattern recognition techniques, it 
is possible to identify individual trees and to delineate tree canopies within the canopy 
height model (Figure 2). 
	 Numerous studies have demonstrated the use of airborne LiDAR to estimate forest 
stand metrics, such as stand canopy height (Gobakken and Naesset 2004; Naesset 
1997), individual tree heights (Suarez et al. 2005), above-ground biomass (Patenaude 
et al. 2004) and species classification (Moffiet et al. 2005). Clifford et al. (2010) 
demonstrated the use of LiDAR for a study area in Ireland and determined that the 
LiDAR-derived estimates of tree height compare very favourably with conventional 
field based measurements. A recent review article by van Leeuwen and Nieuwenhuis 
(2009) summarises studies on space-borne, airborne and terrestrial LiDAR applications 
in forestry worldwide and the potential of these different LiDAR sensors, on their own 
or in combination with each other, to derive detailed measurements of trees and forest 
stands.   
	 It is clear that LiDAR can provide detailed information on the structure of forest 
resources. In particular, tree height, crown dimensions and species can be separated 
using information on branch and leaf structure. However, one of the principal 
limitations to the operational use of LiDAR in forestry is the cost per unit area in 
acquiring data, with the general rule: the more detailed the data (i.e. more points 
per unit area), the more costly it is. However, it has been demonstrated that sub-
sampling the dataset can reduce the acquisition cost and that it is possible to combine 
the sample of high resolution LiDAR data with optical satellite imagery to regionalise 
the information over larger areas using statistical estimation techniques, thus reducing 
the extent of and cost associated with the initial data requirement (Hudak et al. 2002; 
McInerney et al. 2010a). 

Terrestrial LiDAR
In recent years, research has been carried out to produce three dimensional scans of 
forest resources using terrestrial scanners (Nieuwenhuis 2008). Terrestrial scanners 
are mounted on tripods and utilise the same technology as airborne LiDAR scanners. 
They produce a fully three-dimensional dataset and to eliminate the problem 
of occlusion (where one tree blocks the view from the scanner to another tree), 
multiple scans are acquired from different locations within the forest plot, which 
are subsequently ‘stitched’ together. Using semi-automatic methods, it is possible 
to derive detailed individual tree based measurements relating to diameter at breast 
height, stem straightness, taper and branchiness, as well as non-timber information 
such as understory structure, deadwood and terrain classification (Bienert et al. 2006, 
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van Leeuwen and Nieuwenhuis 2010). This clearly offers many new opportunities in 
the acquisition of forest field information. The datasets are fully objective and provide 
extremely detailed information, which can be used to support forest inventories, as 

Figure 1:  Airborne LiDAR processing workflow.

Figure 2: Individual tree identification from LiDAR derived CHM.
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well as timber allocation and processing procedures (Keane 2007, Murphy et al. 
2010). However, there are some specific disadvantages in the use of these sensors that 
relate to acquisition time, limitations in the use of these sensors in some specific site 
and forest conditions and the need to further develop and refine detailed processing 
algorithms that can be used to pre-process and retrieve tree measurements (Nugent et 
al. 2009). 

Conclusions and implications for operational use in Ireland
There is an implicit need for all forests at global, national and regional levels to be 
managed in a sustainable manner. Forest resources are changing at an increasing rate, 
due to more intensive management practices, storm and fire damage, effects from 
insects and diseases, and the consequences of climate change. In order to successfully 
monitor these changes over time in an objective, transparent and effective way, 
foresters require access to timely and objective information, which can only be 
obtained through the use of remote sensing. However, it would be incorrect to consider 
optical satellite imagery as a perfect imaging solution for the purposes of forest or 
indeed environmental monitoring. It is a science and technology that is continually 
evolving, but it also still has some inherent limitations that vary based on its field of 
use and geographic application area.
	 One of the main limitations in the use of remote sensing data in operational 
contexts is the difficulty of acquiring cloud-free satellite imagery over Ireland and 
other northern countries with temperate climates. With the current configuration of 
imaging satellites, this can mean that only three or four useable scenes are acquired 
during any one year. 
	 The stability and continuity of satellite sensor missions has to be borne in mind 
when data are used within operational contexts. For instance, the failure of the Scan 
Line Corrector on-board the Landsat 7 ETM+ sensor (one of the most widely used 
satellite sensors for environmental and land monitoring) meant that the data acquired 
from this sensor were virtually unusable from 2004 onwards. A related issue was the 
fact that Landsat satellites were no longer being developed by the Government of the 
United States of America and this raised many questions regarding data availability and 
continuity of missions by the remote sensing community that was heavily dependent 
on this satellite. 
	 In Ireland, the current generation of optical imaging satellites has limitations in 
clearly distinguishing young forest plantations from other land-cover types (such 
as scrub or rough agricultural land). This difficulty is caused by the mixed spectral 
resolution returned from the underlying ground vegetation and it is only possible 
to accurately classify the forest stand once it has matured to the point of canopy 
closure. 
	 Despite the description of numerous examples of the use of remote sensing in forest 
applications, there still remains a reluctance to use remote sensing in many operational 
environments, despite the widespread use of aerial photographs by foresters. To an 
extent, it is true that remote sensing has remained a research discipline that is focussed 
on scientific methods to analyse and interpret images. Nevertheless, examples cited 
in this article illustrate the fact that remote sensing is an active component within 
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operational forest monitoring and inventory programmes. In addition, over the last 
five years, Earth observation data have become almost ubiquitous within every day 
life through technologies such as Google Earth, Google Maps, Bing Maps and related 
web data services. 
	 It continues to be necessary to bridge the gap in knowledge between foresters 
and remote sensing analysts to more successfully integrate remote sensing and forest 
management in Ireland. The recent generation of high spatial resolution satellite 
sensors, such as the Quickbird, Ikonos and GeoEye, offer equivalent, if not better 
image information for the same or lower costs when compared to aerial photographs. 
Moreover, the synoptic view offered by satellite images and the higher frequency 
of image acquisition make spaceborne satellite imagery more useful in operational 
settings. Within the context of forest monitoring and national forest inventory 
programmes, it is widely considered by the Scandinavian countries that remote sensing 
can substantially increase the cost-efficiency of an inventory. With these factors in 
mind, it is useful to outline some of the noteworthy new remote sensing technological 
developments of relevance to forestry: 
	 1.	 Global daily coverage from the Moderate Resolution Imaging 
		  Spectroradiometer (MODIS) sensor, which acquires data across 36 spectral 
		  bands at a resolution of 250, 500 and 1,000 m. As a result, it can provide 
		  dynamic larges-scale information on the state of forests;
	 2.	 Hyperspectral imaging sensors, which provides extremely high spectral 
		  resolution satellite imagery. For instance, a hyperspectral sensor could 
		  acquire 217 spectral bands within the spectral range of one image band 
		  from a medium resolution sensor, such as Landsat or SPOT. This increased 
		  spectral information can enable the extraction of very subtle differences 
		  between species, forest condition and health;
	 3.	 Synthetic Aperture Radar sensors, which are weather and light independent 
		  and are being increasingly used within forest resource assessments, particularly 
		  for the retrieval of tree height and stand structure. These sensors have being 
		  launched on-board ESA’s Envisat sensor, as well as Japan’s ALOS and 
		  Radarsat-2;
	 4.	 Combined use of terrestrial and airborne LiDAR, coupled with high spatial 
		  resolution satellite imagery, in order to improve the quality of the tree and 
		  stand derived information from above and below the canopy, thereby 
		  providing the most comprehensive tree-related information; 
	 5.	 New commercial imaging sensors, such as GeoEye-1, WorldView-1 and 
		  Quickbird are offering very high resolution satellite imagery (50 – 61 cm 
		  spatial resolution), with the ability for the sensors to return to the same 
		  location at shorter temporal intervals; 
	 6.	 European Space Agency’s (ESA) Sentinel missions.

	 With respect to the last point, the European Space Agency has a short-to-medium 
term plan to launch five satellite sensors, which will be known as Sentinels, for the 
specific operational needs of the European Commission and European Space Agency 
Global Monitoring for Environmental Security (GMES) programme. Sentinel 2 will 
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provide high-resolution multispectral imagery that will be used to monitor vegetation, 
soil and water bodies. The other Sentinel sensors will focus on atmospheric monitoring, 
and land and sea/ocean surface temperature monitoring using RADAR instruments.
	 Image quality and processing requirements are linked. As the spatial and spectral 
resolutions increase, the size of the datasets increases at an exponential rate. The 
requirements for more sophisticated computer processing and storage facilities will 
increase likewise. The image processing and analysis techniques are also developing 
in line with the developments of imaging sensors. In particular, the use of techniques 
such as kNN for parameter estimation will provide novel approaches to utilize disparate 
data sources in an efficient way to improve the spatial estimation of parameters. With 
the correct data sources, these techniques could be further developed to upscale high-
resolution forest monitoring data, acquired from the ICP Level II plots in Ireland, over 
small homogeneous forest areas. 
	 Despite the advances in the technology of space and airborne sensors, it is 
necessary to bear in mind that there always remains a need for field inventories, to 
train sophisticated statistical modeling tools and validate results derived from remote 
sensing analyses. However, the use of new satellite sensors and image analysis 
techniques, coupled with the needs and expertise of forest managers, can lead to the 
development of new applications to provide more comprehensive information for the 
sustainable management of the Irish forest estate.

References
Ardo, J. 1992. Volume Quantification of coniferous forest compartments using spectral 
	 radiance recorded by Landsat Thematic Mapper. International Journal of Remote Sensing 
	 13: 1779–1786.
Atkinson, P. and Tatnall, A. 1997. Introduction to Neural Networks in remote sensing. 
	 International Journal of Remote Sensing 18: 699-709.
Baffetta, F., Fattorini, L., Franceschi, S. and Corona, P. 2009. Design-based approach to 
	 k-nearest neighbours technique for coupling field and remotely sensed data in forest 
	 surveys. Remote Sensing of Environment 113: 463-475. 
Bienert, A., Scheller, S., Keane, E., Mullooly, G. and Mohan, F. 2006. Application of 
	 terrestrial laserscanners for the determination of forest inventory parameters. In 
	 International Archives of Photogrammetry, Remote Sensing, and Spatial Information 
	 Sciences Vol. XXXVI, Part 5.  http://www.isprs.org/commission5/proceedings06/paper/1270_
	 Dresden06.pdf/
Breiman, L. 2001. Random Forests. Machine Learning 5 (1): 5-32.
Briem, G.J., Benediktsson, J.A. and Sveinsson, J.R. 2002. Multiple classifiers applied to 
	 multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing 
	 40: 2291-2299.
Brown de Coulston, E., Story, M., Thompson, C., Commisso, K., Smith, T. and Irons, J. 2003. 
	 National Park Vegetation Mapping Using Multitemporal Landsat 7 data and a decision 
	 tree classifier. Remote Sensing of Environment 85: 316-327.
Bulfin, M., Farrelly, N., Fealy, R., Green, S., Loftus, M., Meehan, R. and Radford, T. 2002. 
	 The Irish Forest Soils Project (FIPS–IFS). Irish Scientist.
Campbell, J. 2002. Introduction to Remote Sensing. Taylor and Francis, London, England.
Cardille, J. and Clayton, M. 2007. A regression tree-based method for integrating land-cover 
	 and land-use data collected at multiple scales. Environmental Ecology Statistics 14: 
	 161–179.



Irish Forestry

19

Clifford. B., Farrelly, N. and Green, S. 2010. A preliminary evaluation of the application of 
	 multi-return LiDAR for forestry in Ireland. COFORD Connects Silviculture / 
	 Management No. 18. http://www.coford.ie/media/coford/content/publications/projectreports/
	 cofordconnects/sm18.pdf  Retrieved on 10th October 2011.
Forest Service. 2007. National Forest Inventory, Republic of Ireland – Methodology. 
	 Department of Agriculture, Fisheries and Food. Johnstown Castle Estate, Co. Wexford.
Fix, E. and Hodges, J. 1951. Discriminatory analysis - nonparametric discrimination: 
	 consistency properties. Project 41-49-004, Report 4, pp. 261–279.
Franklin, S.E. 1990. Remote Sensing for Sustainable Forest Management, 4th Ed. Lewis 
	 Publishers, Florida, USA.
Gallagher, G., Dunne, S., Jordan, P. and Stanley, B. 1999. Ireland’s Forest Inventory and 
	 Planning System. In Proceedings of the IUFRO Conference on Remote Sensing and 
	 Forest Monitoring. June 1-3, 1999. Rogow, Poland.
Gobakken, T. and Naesset, E. 2004. Estimation of diameter and basal area distributions in 
	 coniferous forests by means of airborne laser scanner data. Scandinavian Journal of 
	 Forest Research 19: 529-542. 
Gjertsen, A.K., Tomppo, E. and Tomter, S. 1999. National Forest Inventory in Norway: Using 
	 Sample Plots, Digital Maps and Satellite Images. In Proceedings of the IEEE 
	 International Geosciences and Remote Sensing Symposium, Hamburg, Germany, pp. 729-
	 731.
Gjertsen, A.K. 2007. Accuracy of forest mapping based on Landsat TM data and a kNN-based 
	 method. Remote Sensing of Environment 110: 420-430. 
Hagner, O. and Reese, H. 2007. A method for calibrated maximum likelihood classification of 
	 forest types. Remote Sensing of Environment 110: 438-444.
Häme, T., Tomppo, E. and Parmes, E. 1987. Stand based forest inventory and monitoring 
	 using SPOT image. In Proceedings of the International Conference SPOT-1 Image 
	 Utilisation, Assessment, Results, 23 - 27 November, Paris, France, pp. 971-977.
Häme, T., Stenberg, P., Anderson, K., Rauste, Y., Kennedy, P., Folving, S. and Sarkeala, J. 
	 2001. AVHRR-based forest proportion map of the Pan-European area. Remote Sensing of 
	 Environment 77: 76-91.
Hansen, M., Dubayah, R. and DeFries, R. 1996. Classification trees: an alternative to 
	 traditional land cover classifiers. International Journal of Remote Sensing 17: 1075-1081.
Holmgren, J., Joyce, S., Nilsson, M. and Olsson, H. 2000. Estimation and mapping of forest 
	 stand density, volume and cover type using the k-Nearest Neighbour method. 
	 Scandinavian Journal of Forest Research 15: 103-111.
Horler, D. and Ahern, F. 1986. Forestry information content of Thematic Mapper data. 
	 International Journal of Remote Sensing 3: 405-428.
Hudak, A., Lefsky, M., Cohen, W. and Berterretche, M. 2002. Integration of lidar and Landsat 
	 ETM+ data for estimating and mapping forest canopy height. Remote Sensing of 
	 Environment 82: 392-416.
Jaakkola, S. 1983. Use of the Landsat MSS for forest inventory and regional management: the 
	 European experience. Remote Sensing Reviews 2: 165-213.
Joy, S., Reich, R. and Reynolds, R. 2003. A non-parametric, supervised classification of 
	 vegetation types on the Kaibab National Forest using decision trees. International Journal 
	 of Remote Sensing 24: 1835-1852.
Keane, E. 2007.  The potential of terrestrial laser scanning technology in pre-harvest timber 
	 measurement operations. COFORD Connects, Harvesting / Transportation no. 7. 
	 COFORD, Dublin. http://www.coford.ie/media/coford/content/publications/projectreports/ 
	 Retrieved 10th October 2011.



Irish Forestry

20

Kilkki, P. and Paivinen, R. 2006. Reference sample plots to combine field measurements 
	 and satellite data in forest inventory. Technical report, Dept. of Forest Mensuration and 
	 Management, University of Helsinki, Finland.
Kim, H.-J. and Tomppo, E. 2006. Model-based prediction error uncertainty estimation for kNN 
	 method. Remote Sensing of Environment 104: 257-263.
Koukal, T., Suppan, F. and Schneider, W. 2005. The impact of radiometric calibration on kNN 
	 predictions of forest attributes. In Proceedings of the ForestSAT 2005 Conference, 31st 
	 May - 3rd June, Boras, Sweden.
Lillesand, T.M., Kiefer, R.W. and Chipman, J.W. 2008. Remote sensing and image 
	 interpretation. 6th Ed. John Wiley & Sons, Hoboken, New Jersey.
Loftus, M., Bulfin, M., Farelly, N., Fealy, R., Green, S., Meehan, R. and Radford, T. 2002. 
	 The Irish forest soils project and its contribution to the assessment of biodiversity. 
	 Biology and Environment: Proceedings of the Royal Irish Academy 102: 151-164. 
Lund, H.G. Befort, W., Brickell, J., Ciesla, W., Collins, E., Czaplewski, R., Disperati, A., 
	 Douglass, R., Dull, C., Greer, J., Hershey, R., LaBau, V., Lachowski, H., Murtha, P., 
	 Nowak, D., Roberts, M., Schram, P., Shedha, M., Singh, A. and Winterberger, K. 1997. 
	 Forestry. In Manual of Photographic Interpretation, 2nd Edition. Bethesda, MD: 
	 American Society for Photogrammetry and Remote Sensing. Ed. Philipson, W.R., pp. 
	 399-440.
Maselli, F., Chirici, G., Bottai, L., Corona, P. and Marchetti, M. 2005. Accuracy of forest 
	 mapping based on Landsat TM data and a kNN-based method. International Journal of 
	 Remote Sensing 17: 3781-3796.
McCormick, N. and S. Folving. 1998. Monitoring European forest biodiversity at regional 
	 scales using satellite remote sensing. In Assessment of Biodiversity for Improved Forest 
	 Planning. Eds. Bachmann, P., Kohl, M. and Paivinen, R. Kluwer Academic Publishers, 
	 Dordrecht, The Netherlands. 
McInerney, D. and Suarez, J. 2005. Scottish forest inventory information derived from 
	 satellite imagery and field data. In Proceedings of IUFRO Conference “Sustainable 
	 Forestry in Theory and Practice”, Edinburgh, 5-8 April 2005.
McInerney, D. and Nieuwenhuis, M. 2009. Comparative Analysis of kNN and Decision Tree 
	 Methods for the Irish NFI. International Journal of Remote Sensing 30: 4937–4955.
McInerney, D., Suarez, J., Valbuena, R. and Nieuwenhuis, M. 2010a.  Forest canopy height 
	 retrieval using LiDAR data, medium resolution satellite imagery and kNN estimation in 
	 Aberfoyle, Scotland. Forestry 83: 195-206. 
McInerney, D., Harper, C. and Nieuwenhuis, M. 2010b. Monitoring forest cover in Ireland - 
	 Validation of new remote sensing data. Poster presented at the workshop: “Forest 
	 monitoring network Workshop. The value of forest monitoring networks: Their role in 
	 a changing environment” Glenview Hotel, Delgany, Co. Wicklow, 4 March 2010. Hosted 
	 by COFORD.
McRoberts, R.E., Wendt, D.G., Nelson, M.D. and Hansen, M.D. 2002. Using a land cover 
	 classification based on satellite imagery to improve the precision of forest inventory area 
	 estimates. Remote Sensing of Environment 81: 36-44.
McRoberts, R.E. and Tomppo, E.O. 2007. Remote sensing support for national forest 
	 inventories. Remote Sensing of Environment 110: 412-419.
McRoberts, R.E. 2008. Using satellite imagery and the k-nearest neighbours technique as a 
	 bridge between strategic and management forest inventories. Remote Sensing of 
	 Environment 112: 2212-2221.
Mac Siúrtáin, M.P., Flanagan, E.S., Collins, E.S., Jordan, P., Little, D. and Joyce, P.M. 1994. 
	 National Forest Inventory Pilot Project -Roscommon, Final Report, University College 
	 Dublin.



Irish Forestry

21

Moeur, M. and Stage, A. 1995. Most Similar Neighbour: An Improved Sampling Inference 
	 Procedure for Natural Resource Planning. Forest Science 41: 337-359.
Moffiet, T., Mengersen, K., Witte, C., King, R. and Denham, R. 2005. Airborne laser 
	 scanning: exploratory data analysis indicates potential variables for classification of 
	 individual trees or forest stands according to species. ISPRS Journal of Photogrammetry 
	 and Remote Sensing 59: 289-309.
Murphy, G., Lyons, J., O’Shea, M., Mullooly, G., Keane, E. and Devlin, G. 2010. 
	 Management tools for optimal allocation of wood fibre to conventional log and bio-energy 
	 markets in Ireland: a case study. European Journal of Forest Research 129: 1057-1067. 
Naesset, E. 1997. Determination of mean tree height of forest stands using airborne laser 
	 scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 52: 49-56.
Nilsson, M. 2002. Deriving Nationwide estimates of forest variables for Sweden using 
	 Landsat ETM+ and field data. In Proceedings of the ForestSAT 2002 Symposium, 5th 
	 - 9th August, Edinburgh, Scotland.
Nieuwenhuis, M. 2008. FORESTSCAN – Terrestrial Laser Scanning Technology for Multi-
	 Resource Inventories. Irish Timber and Forestry 17: 32-35. 
Nugent, C., Bridge, D., Murphy, G. and Oyen, B. 2009. Case-Based Support for Forestry 
	 Decisions: How to See the Wood from the Trees. ICCBR 2009 LNAI 5650, pp 479-493.
Ohmann, J. and Gregoire, M. 2002. Predictive mapping of forest composition and 
	 structure with direct gradient nearest neighbour imputation in coastal Oregan, U.S.A. 
	 Canadian Journal of Forest Research 32: 725-741.
Patenaude, G., Hill, R., Milne, R., Gaveau, D., Briggs, B. and Dawson, T. 2004. Quantifying 
	 forest aboveground carbon content using LiDAR remote sensing. Remote Sensing of 
	 Environment 93: 368-380. 
Pekkarinen, A., Reithmaier, L. and Strobl, P. 2009. Pan-European forest/non-forest mapping 
	 with Landsat ETM+ and CORINE Land Cover 2000 data. ISPRS Journal of 
	 Photogrammetry and Remote Sensing 64: 171-183.
Reese, H., Nilsson, M., Sandstrom, P. and Olsson, H. 2002. Applications using estimates of 
	 forest parameters derived from satellite and forest inventory data. Computers and 
	 Electronics in Agriculture 37: 37-55.
Schuck, A., Päivinen, R., Häme, T., Van Brusselen, J., Kennedy, P. and Folving, S. 2003. 
	 Compilation of a European forest map from Portugal to the Ural mountains based on earth 
	 observation data and forest statistics. Forest Policy and Economics 5: 187-202.
Stanley, B., Dunne, S. and Keane, M. 1996. Forest condition assessments and other 
	 applications of colour infrared (CIR) aerial photography in Ireland. Irish Forestry 53: 19-
	 27.
Suárez, J.C., Ontiveros, C., Smith, S. and Snape, S. 2005. Use of airborne LiDAR and 
	 aerial photography in the estimation of individual tree heights in forestry. Computers and 
	 Geosciences 31: 253-262.
Tomppo, E. 1991. Satellite Image Based National Forest Inventory of Finland. International 
	 Archives of Photogrammetry and Remote Sensing 28: 419-424.
Tomppo, E. 1996. Application of Remote Sensing in Finnish National Forest Inventory. In 
	 Proceedings of the Application of Remote Sensing in European Forest Monitoring, 14-16 
	 October 1996, Vienna, Austria, pp. 147–156.
Tomppo, E., Goulding, C. and Katila, M. 1999. Adapting Finnish multi-source forest 
	 inventory techniques to the New Zealand preharvest inventory. Scandinavian Journal of 
	 Forest Research 14: 182-192.
Tomppo, E. and Halme, M. 2004. Using coarse scale forest variables as ancillary information 
	 and weighting of variables in k-NN estimation: a genetic algorithm approach. Remote 
	 Sensing of Environment 92: 1-20.



Irish Forestry

22

Tomppo, E., Olsson, H., Ståhl, G., Nilsson, M., Hagner, O. and Katila, M. 2008a. Combining 
	 national forest inventory field plots and remote sensing data for forest databases. Remote 
	 Sensing of Environment 112: 1982-1999.
Tomppo, E., Haakana, M., Katila, M. and Peräsaari, J. 2008b. Multi-source national forest 
	 inventory -Methods and applications. Managing Forest Ecosystems 18. Springer. 374 p.
Van Leeuwen, M. and Nieuwenhuis, M. 2010. Retrieval of forest structural parameters using 
	 LiDAR remote sensing. European Journal of Forest Research 129: 749-770.
Varjo, J. 1996. Controlling continuously updated forest data by satellite remote sensing. 
	 International Journal of Remote Sensing 17: 43-67.
World Bank. 2008. Forest Sourcebook -Practical Guidance for Sustaining Forests in 
	 Development Cooperation ISBN 978-0-8213-7163-3.
Wynne, R.F., Oderwald, R.G., Reams, G.A. and Scrivani, J.A. 2000. Optical remote sensing 
	 for forest area estimation. Journal of Forestry 98: 31-36.


